Skip to main content

Advertisement

Log in

Chasing a complete understanding of the triggering mechanisms of a large rapidly evolving rockslide

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Rockslides in alpine areas can reach large volumes and, owing to their position along slopes, can either undergo large and rapid evolution originating large rock avalanches or can decelerate and stabilize. As a consequence, in particular when located within large deep-seated deformations, this type of instability requires accurate observation and monitoring. In this paper, the case study of the La Saxe rockslide (ca. 8 × 106 m3), located within a deep-seated deformation, undergoing a major phase of acceleration in the last decade and exposing the valley bottom to a high risk, is discussed. To reach a more complete understanding of the process, in the last 3 years, an intense investigation program has been developed. Boreholes have been drilled, logged, and instrumented (open-pipe piezometers, borehole wire extensometers, inclinometric casings) to assess the landslide volume, the rate of displacement at depth, and the water pressure. Displacement monitoring has been undertaken with optical targets, a GPS network, a ground-based interferometer, and four differential multi-parametric borehole probes. A clear seasonal acceleration is observed related to snow melting periods. Deep displacements are clearly localized at specific depths. The analysis of the piezometric and snowmelt data and the calibration of a 1D block model allows the forecast of the expected displacements. To this purpose, a 1D pseudo-dynamic visco-plastic approach, based on Perzyna’s theory, has been developed. The viscous nucleus has been assumed to be bi-linear: in one case, irreversible deformations develop uniquely for positive yield function values; in a more general case, visco-plastic deformations develop even for negative values. The model has been calibrated and subsequently validated on a long temporal series of monitoring data, and it seems reliable for simulating the in situ data. A 3D simplified approach is suggested by subdividing the landslide mass into distinct interacting blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Agliardi F, Crosta G, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59(1):83–102

    Article  Google Scholar 

  • Agliardi F, Crosta GB, Frattini P (2012) Slow rock slope deformation. In: Clague JJ, Stead D (eds) Landslides: types, mechanisms and modeling, Cambridge University Press, pp 207–221

  • Angeli MG, Gasparetto P, Menotti RM, Pasuto A, Silvano S (1996) A visco-plastic model for slope analysis applied to a mudslide in Cortina d’Ampezzo, Italy. Q J Eng Geol 29:233–240

    Article  Google Scholar 

  • Antoine P et al (1979) Geological map of France, scale 1/50,000, sheet Mont-Blanc (704). Bur. de Rech. Geol. et Min, Orléans, France

    Google Scholar 

  • Antoine P, Pairis JL, Pairis B (1975) Quelques observations nouvelles sur la structure de la couverture sédimentaire interne du massif du Mont-Blanc, entre col Ferret (frontière italo-suisse) et la Tête des Fours (Savoie, France). Géol Alpine 51:5–23

    Google Scholar 

  • Binet S, Mudry J, Scavia C, Campus S, Bertrand C, Guglielmi Y (2007) In situ characterization of flows in a fractured unstable slope. Geomorphology 86:193–203

    Article  Google Scholar 

  • Boadu FK (1997) Fractured rock mass characterization parameters and seismic properties: analytical studies. J Appl Geophys 36:1–19

    Article  Google Scholar 

  • Broccolato M, Cancelli P, Castellanza R, Crosta GB, Frattini P, Tamburini A (2011a) Applicazione di modellazioni numeriche alla frana di Mont de la Saxe (Courmayeur—AO) XXIV Convegno Nazionale di Geotecnica, “Innovazione Tecnologica nell’ingegneria Geotecnica”. Napoli 2:617–624

    Google Scholar 

  • Broccolato, M., Cancelli, P., Crosta, G.B., Tamburini A., Alberto W. (2011b) Tecniche di rilievo e monitoraggio della frana di Mont de la Saxe (Courmayeur—AO). XXIV Convegno Nazionale di Geotecnica, “Innovazione Tecnologica nell’ingegneria Geotecnica”, Napoli

  • Burgi C, Parriaux A, Franciosi G (2001) Geological characterization of weak cataclastic fault rocks with regards to the assessment of their geomechanical properties. Quart J Eng Geol Hydrogeol 34:225–232

    Article  Google Scholar 

  • Butterfield R (2000) A dynamic model of shallow slope motion driven by fluctuating groundwater levels. Proc. 8th Int. Symposium on Landslides. Thomas Telford, London, 1, 203–208

  • Cappa F, Gugliemi Y, Soukatchoff VM, Mudry J, Bertrand C, Charmoille A (2004) Hydromechanical modeling of a large moving rock slope inferred from slope levelling coupled to spring long-term hydrochemical monitoring: example of the La Clapière landslide (Southern Alps, France). J Hydrol 291:67–90

    Article  Google Scholar 

  • Casagli N, Catani F, Del Ventisette C, Luzi G (2010) Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 7(3):291–301

    Article  Google Scholar 

  • Chigira M (2005) September 2005 rain-induced catastrophic rockslides on slopes affected by deep-seated gravitational deformations, Kyushu, southern Japan. Eng Geol 108(1–2):1–15

    Google Scholar 

  • Corominas J, Moya J, Ledesma A, Lloret A, Gili JA (2005) Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2:83–96

    Article  Google Scholar 

  • Crosta GB, Agliardi F (2002) How to obtain alert velocity thresholds for large rockslides. Phys Chem Earth. Parts A/B/C 27(36):1557–1565. doi:10.1016/S1474-7065(02)00177-8

    Google Scholar 

  • Crosta GB, Chen H, Frattini P (2006) Forecasting hazard scenarios and implications for the evaluation of countermeasure efficiency for large debris avalanches. Eng Geol 83(1–3):236–253

    Article  Google Scholar 

  • Crosta GB, Agliardi F (2003) Failure forecast for large rock slides by surface displacement measurements. Can Geotech J 40:176–191

    Article  Google Scholar 

  • Crosta GB, Castellanza R, Frattini P, Broccolato M, Bertolo D, Cancelli P, Tamburini A (2012a) Comprehensive understanding of a rapid moving rockslide: the Mt de la Saxe landslide. MIR 2012 XIV Ciclo di Conferenze di Meccanica e Ingegneria delle Rocce—Nuovi metodi di indagine, monitoraggio e modellazione degli ammassi rocciosi, 20 pp

  • Crosta et al. (2012b) Caratterizzazione geologica, geofisica e geomeccanica del versante sinistro dell’invaso di Pian Palù—Monte Le Mandriole (Pejo,Ttn). relazione geologica-geomeccanica. (unpublished), 347 pp

  • Crosta G, Frattini P, Basiricò S, Cancelli P, Alberto W, Tamburini A (2011) Modello idrogeologico del versante di Mont de La Saxe e aggiornamento dello stato delle conoscenze. Regione Valle d’Aosta (unpublished report), 102 pp

  • De Giusti F, Bonetto F, Dal Piaz GV (2005) Carta geologica della Valle d’Aosta, scala 1:100.000. Regione Autonoma Valle d’Aosta, Assessorato territorio, ambiente e opere pubbliche

  • di Prisco C, Imposimato S (1996) Time dependent mechanical behaviour of loose sands. Mech Cohes-Frict Mater 1(1):45–73

    Article  Google Scholar 

  • di Prisco C, Zambelli C (2003) Cyclic and dynamic mechanical behaviour of granular soils: experimental evidence and constitutive modelling. Rev Franç Genie Civil 7(7–8):881–910

    Article  Google Scholar 

  • Eberhardt E, Watson AD, Loew S (2008) Improving the interpretation of slope monitoring and early warning data through better understanding of complex deep-seated landslide failure mechanisms. In: Chen Z, Zhang J, Li Z, Wu F, Ho K (Eds). Landslides and engineered slopes: from the past to the future, 10th Int. Symp. on Landslides and Engineered Slopes. Taylor & Francis, Xi’an, 39–51

  • Faulkner DR, Jackson CAL, Lunn RJ, Schlische RW, Shipton ZK, Wibberley CAJ, Withjack MO (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J Struct Geol 32:1557–1575

    Article  Google Scholar 

  • Fischer U, Kulli B, Flühler H (1998) Constitutive relationships and pore structure of undisturbed fracture zone samples with cohesionless fault gouge layers. Water Resour Res 34(7):1695–1701

    Article  Google Scholar 

  • Frigerio G (2010) Evoluzione di movimenti franosi lenti: interpretazione dei dati mediante modellazione numerica semplificata. Master thesis (in Italian), Politecnico di Milano

  • Ganerød GV, Grøneng G, Rønning JS, Dalsegg E, Elvebakk H, Tønnesen JF, Kveldsvik V, Eiken T, Blikra LH, Braathen A (2008) Geological model of the Åknes rockslide, western Norway. Eng Geol. doi:10.1016/j.enggeo.2008.01.018

    Google Scholar 

  • Gillon MD, Hancox GT (1992) Cromwell gorge landslides: a general overview. In: Bell DH (ed.). Landslides—Proceedings of the Sixth International Symposium, Christchurch, 10–14 February 1992, Rotterdam, A.A. Balkema, 1(3):83–102

  • Gillon MD, Riley PB, Lilley PB, Halliday GS (1992) Movement history and infiltration: Cairnmuir landslide. In: Bell DH (ed.). Landslides—Proceedings of the Sixth International Symposium, Christchurch, 10–14 February 1992, Rotterdam, A.A. Balkema, 1(3): 103–109

  • Gischig VS, Moore JR, Evans KF, Amann F, Loew S (2011) Thermomechanical forcing of deep rock slope deformation: 2. The Randa rock slope instability. J Geophys Res F Earth Surf 116(4):F0401

    Google Scholar 

  • Glastonbury J, Fell R (2010) Geotechnical characteristics of large rapid rock slides. Can Geotech J 47(1):116–132. doi:10.1139/T09-080

    Article  Google Scholar 

  • Gleeson T, Manning AH (2008) Regional groundwater flow in mountainous terrain: three-dimensional simulations of topographic and hydrogeologic controls. Water Resour Res 44, W10403. doi:10.1029/2008WR006848

    Google Scholar 

  • Gottardi G, Butterfield R (2001) Modelling ten years of downhill creep data. Proc. of the 15th Inter. Conf. on Soil Mechanics and Geotechnical Engineering. Istanbul, Turkey, 1–3, 27–31

  • Grøneng G, Christiansen HH, Nilsen B, Blikra LH (2011) Meteorological effects on seasonal displacements of the Åknes rockslide, western Norway. Landslides 8(1):1–15. doi:10.1007/s10346-010-0224-x

    Article  Google Scholar 

  • Guermani A, Pennacchioni G (1998) Brittle precursors of plastic deformation in a granite: an example from the Mont-Blanc massif (Helvetic, western Alps). J Struct Geol 20:135–148

    Article  Google Scholar 

  • Guglielmi Y, Cappa F, Binet S (2005) Coupling between hydrogeology and deformation of mountainous rock slopes: insights from La Clapière area (southern Alps, France). Compt Rendus Geosci 337:1154–1163

    Article  Google Scholar 

  • Helmstetter A, Garambois S (2010) Seismic monitoring of Séchilienne rockslide (French Alps): analysis of seismic signals and their correlation with rainfalls. J Geophys Res 115, F03016. doi:10.1029/2009JF001532

    Google Scholar 

  • Karampatakis DA, Hatzigogos TN (1999) A model to describe creeping behavior of thin-layer element for interfaces and joints proceedings from COST C7 Workshop in Thessaloniki, 1–2 October 1999, 1–16

  • Kirsch R (2006) Petrophysical properties of permeable and low-permeable rocks. In: Kirsch R (ed) Groundwater geophysics. A tool for hydrogeology. Springer, Berlin. doi:10.1007/3-540-29387-6, 1–22

    Chapter  Google Scholar 

  • Lama RD, Vutukuri V (1978) Handbook on mechanical properties of rocks. Trans Tech Publ 2

  • Leloup PH, Arnaud N, Sobel ER, Lacassin R (2005) Alpine thermal and structural evolution of the highest external crystalline massif: the Mont Blanc. Tectonics 24, TC4002. doi:10.1029/2004TC001676

    Article  Google Scholar 

  • Lollino G, Arattano M, Allasia P, Giordan D (2006) Time response of a landslide to meteorological events. Nat Hazards Earth Syst Sci 6:179–184

    Article  Google Scholar 

  • Macfarlane DF (2009) Observations and predictions of the behaviour of large, slow-moving landslides in schist, Clyde Dam reservoir, New Zealand. Eng Geol 109(1–2):29, 5–15

    Google Scholar 

  • Macfarlane DF, Riddolls BW, Crampton NA, Foley MR (1992a) Engineering geology of schist landslides, Cromwell, New Zealand. In: Bell DH (ed.). Landslides—Proceedings of the Sixth International Symposium, Christchurch, 10–14 February 1992, Rotterdam, A.A. Balkema, 3(3):2137–2144

  • Macfarlane DF, Pattle AD, Salt G (1992b) Nature and indentification of Cromwell Gorge landslides groundwater systems. In: Bell DH (ed.). Landslides—Proceedings of the Sixth International Symposium, Christchurch, 10–14 February 1992, Rotterdam, A.A. Balkema, 1(3):509–518

  • Mansour MF, Martin CD, Morgenstern NR (2011) Movement behaviour of the little chief slide. Can Geotech J 48(4):655–670

    Article  Google Scholar 

  • Moore DP, Imrie AS (1995) Stabilization of Dutchman’s Ridge. In: Bell DH (ed.). International symposium on landslides. ISL VI. Balkema, Christchurch, pp. 1783–1788

  • Newmark NM (1965) Effects of earthquakes on dams and embankments. Geotechnique 15(2):139–160

    Article  Google Scholar 

  • Nishii R, Matsuoka N, Daimaru H, Yasuda M (2013) Precursors and triggers of an alpine rockslide in Japan: the 2004 partial collapse during a snow-melting period. Landslides 10:75–82. doi:10.1007/s10346-012-0353-5

    Article  Google Scholar 

  • Palmstrom A (1995) RMi—a rock mass characterization system for rock engineering purposes. PhD thesis, Oslo Univ., 400 pp

  • Perello P, Piana F, Martinotti G (1999) Neo-Alpine structural features at the boundary between the Penninic and Helvetic domains (Prè S. Didier-Entrèves, Aosta valley, Italy). Eclogae Geol Helv 92:347–359

    Google Scholar 

  • Perzyna P (1963) The constitutive equations for rate sensitive plastic materials. Quart Appl Math 20:321–332

    Google Scholar 

  • Pisani G, Castelli M, Scavia C (2010) Hydrogeological model and hydraulic behaviour of a large landslide in the Italian Western Alps. Nat Hazards Earth Syst Sci 10:2391–2406

    Article  Google Scholar 

  • Puzrin AM, Schmid A (2012) Evolution of stabilized creeping landslides. Geotechnique 62(6):491–501

    Article  Google Scholar 

  • Ranalli M, Gottardi G, Medina-Cetina Z, Nadim F (2010) Uncertainty quantification in the calibration of a dynamic viscoplastic model of slow slope movements. Landslides 7:31–41

    Article  Google Scholar 

  • Ratto S, Giardino M, Giordan D, Alberto W, Armand M (2007) Carta dei fenomeni franosi della valle d’Aosta, 1:100 000 in scale. Tipografia valdostana, Aosta

  • Riedmüller G, Brosch FJ, Klima K, Medley EW (2001) Engineering geological characterization of brittle faults and classification of fault rocks. Felsbau 19(4):13–19

    Google Scholar 

  • Sausgruber T, Brandner R (2003) The relevance of brittle fault zones in tunnel construction—Lower Inn Valley Feeder Line North of the Brenner Base Tunnel, Tyrol, Austria. Mitt Österr Geol Ges 0251–7493(94):157–172

    Google Scholar 

  • Secondi M, Crosta GB, di Prisco C, Frigerio G, Frattini P, Agliardi F (2013) Landslide motion forecasting by a dynamic visco-plastic model. In Landslide Science and Practice, Volume 3: Spatial Analysis and Modelling; Eds. Margottini C, Canuti P, Sassa K, Springer, 151–159

  • Sjögren B, Øvsthus A, Sandberg L (1979) Seismic classification of rock mass qualities. Geophys Prospect 27(2):409–442

    Article  Google Scholar 

  • Zangerl C, Eberhardt E, Perzlmaier S (2010) Kinematic behaviour and velocity characteristics of a complex deep-seated crystalline rockslide system in relation to its interaction with a dam reservoir. 112(1IN)53 1I

  • Watkins JS, Walters LA, Godson RH (1972) Dependence of in-situ compressional-wave velocity on porosity in unsaturated rocks. Geophysics 37(1):29–35

    Article  Google Scholar 

  • Wyllie MRJ, Gregory AR, Gardner LW (1956) Elastic wave velocities in heterogeneous and porous media. Geophysics 21:41–70

    Article  Google Scholar 

  • Wyllie MRJ, Gregory AR, Gardner LW (1958) An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics 23:459–493

    Article  Google Scholar 

Download references

Acknowledgments

The authors are deeply grateful to M. Broccolato, D. Bertolo, and the personnel of the Geological Survey of Regione Valle d’Aosta; to P. Cancelli (SCA srl, Milano), A. Tamburini, and W. Alberto (Imageo, Torino), S. Basiricò (Univ. Milano Bicocca) for managing many of the investigations and for the collaboration in collecting data in the field and during their elaboration. C. Rivolta and D. Leva from Ellegi srl (operating GB-InSAR system) and M. Lovisolo from CSG srl (operating the DMS columns) are thanked for the continuous support in data extraction and elaboration. The authors wish to thank D. Jean Hutchinson, S. Löw, and an anonymous reviewer for their suggestions that allowed improving the former version of the manuscript. The research has been partially funded by the PRIN-MIUR 2010-2011 - 2010E89BPY_007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Crosta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crosta, G.B., di Prisco, C., Frattini, P. et al. Chasing a complete understanding of the triggering mechanisms of a large rapidly evolving rockslide. Landslides 11, 747–764 (2014). https://doi.org/10.1007/s10346-013-0433-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-013-0433-1

Keywords

Navigation