Skip to main content
Log in

Numerical study on the evolution process of a geohazards chain resulting from the Yigong landslide

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Geohazard chain processes in mountainous areas generally entail a landslide, followed by a dammed lake, a dam breach, and then outburst flooding. These chains have greater destructive power and a larger area of coverage than a single process, of which a representative event is the April 2000 Yigong landslide in Tibet, China. In this study, a two-part, numerical back-analysis of the entire chain process is carried out. Enhanced one-layer Savage-Hutter models, which incorporate a multiscale, empirical friction model (velocity-weakening) and appropriate erosion mechanics, are solved using a non-staggered central differencing scheme. A reasonable reproduction of the geohazard event chain was obtained. Results show that the use of the multiscale friction law is able to reproduce the dynamic process of the landslide with acceptable accuracy. In addition, the variation of soil shear resistance along the dam depth (against the water flow above) during the dam breach is considered in the study, in which the outburst flooding process is better modeled. The numerical results, validated by field measurements, provide reliable assessment and interpretation of the actual event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amos CL, Bergamasco A, Umgiesser G, Cappucci S, Cloutier D, Denat L, Flindt M, Bonardi M, Cristante S (2004) The stability of tidal flats in Venice lagoon — the results of in-situ measurements using two benthic, annular flumes. J Mar Syst 51(1):211–241

    Google Scholar 

  • Annandale GW (2006) Scour technology- mechanics and engineering practice. McGraw-Hill, New York

    Google Scholar 

  • Bohorquez P, Carling P, Herget J (2015) Dynamic simulation of catastrophic late Pleistocene glacial-lake drainage, Altai Mountains, Central Asia. Int Geol Rev 58(14):1795–1817

    Google Scholar 

  • Breard ECP, Dufek J, Roche O (2019) Continuum modeling of pressure- balanced and fluidized granular flows in 2-D: comparison with glass bead experiments and implications for concentrated pyroclastic density currents. Journal of Geophysical Research: Solid Earth 124:5557–5583

    Google Scholar 

  • Cao Z (1999) Equilibrium near-bed concentration of suspended sediment. J Hydraul Eng 125(12):1270–1278

    Google Scholar 

  • Cao Z, Pender G, Wallis S, Carling P (2004) Computational dam-break hydraulics over erodible sediment bed. J Hydraul Eng 130(7):689–703

    Google Scholar 

  • Cao Z, Yue Z, Pender G (2011a) Landslide dam failure and flood hydraulics. Part I: experimental investigation. Nat Hazards 59(2):1003–1019

    Google Scholar 

  • Cao Z, Yue Z, Pender G (2011b) Landslide dam failure and flood hydraulics. Part II: coupled mathematical modelling. Nat Hazards 59(2):1021–1045

    Google Scholar 

  • Carrivick JL (2010) Dam break - outburst flood propagation and transient hydraulics: a geosciences perspective. J Hydrol 380(3–4):338–355

    Google Scholar 

  • Casagli N, Ermini L, Rosati G (2003) Determining grain size distribution of the material composing landslide dams in the Northern Apennines: sampling and processing methods. Eng Geol 69:83–97

    Google Scholar 

  • Chang DS, Zhang LM (2010) Simulation of the erosion process of landslide dams due to overtopping considering variations in soil erodibility along depth. Nat Hazards Earth Syst Sci 10(4):933–946

    Google Scholar 

  • Chang DS, Zhang LM, Xu Y, Huang RQ (2011) Field testing of erodibility of two landslide dams triggered by the 12 May Wenchuan earthquake. Landslides 8(3):321–332

    Google Scholar 

  • Chen SC, Peng SH (2006) Two-dimensional numerical model of two-layer shallow water equations for confluence simulation. Adv Water Resour 29(11):1608–1617

    Google Scholar 

  • Costa JE, Schuster RL (1988) The formation and failure of natural dams. Geol Soc Am Bull 100:1054–1068

    Google Scholar 

  • Crosta GB, Calvetti F, Imposimato S, Roddeman D, Frattini P, Agliardi F (2001) Granular flows and numerical modelling of landslides. In: Report of DAMOCLES project, pp 16–36

    Google Scholar 

  • Delaney KB, Evans SG (2015) The 2000 Yigong landslide (Tibetan Plateau), rockslide-dammed lake and outburst flood: review, remote sensing analysis, and process modelling. Geomorphology 246:377–393

    Google Scholar 

  • Denlinger RP, DRH O’C (2009) Simulations of cataclysmic outburst floods from Pleistocene Glacial Lake Missoula. Geol Soc Am Bull 122(5–6):678–689

    Google Scholar 

  • Fan X, Tang CX, van Westen CJ, Alkema D (2012) Simulating dam-breach flood scenarios of the Tangjiashan landslide dam induced by the Wenchuan Earthquake. Nat Hazards Earth Syst Sci 12(10):3031–3044

    Google Scholar 

  • Fraccarollo L, Capart H (2002) Riemann wave description of erosional dam-break flows. J Fluid Mech 461:183–228

    Google Scholar 

  • Gu DZ (1979) Engineering geological mechanics foundation of rock. Science Press:10-68 (In Chinese)

  • Han L, Zhang J, Zhang Y, Ma Q, Alu S, Lang Q (2019) Hazard assessment of earthquake disaster chains based on a Bayesian network model and ArcGIS. ISPRS Int J Geo Inf 8.

  • Hanson G, Simon A (2001) Erodibility of cohesive steambeds in the loess area of the midwestern USA. Hydrol Process 15(1):23–28

    Google Scholar 

  • Hanson GJ, Cook KR (1997) Development of excess shear stress parameters for circular jet testing. American Society of Agricultural Engineers Paper 972227, ASAE, St. Joseph, MI

  • Iverson RM (2012) Elementary theory of bed-sediment entrainment by debris flows and avalanches. J Geophys Res 117:F03006

    Google Scholar 

  • Jiang GS, Levy D, Lin CT, Osher S, Tadmor E (1999) High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws. SIAM J Numer Anal 35(6):2147–2168

    Google Scholar 

  • Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441(7094):727–730

    Google Scholar 

  • Julian JP, Torres R (2006) Hydraulic erosion of cohesive riverbanks. Geomorphology 76(1–2):193–206

    Google Scholar 

  • Kurganov A, Tadmor E (2000) New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J Comput Phys 160(1):241–282

    Google Scholar 

  • Liu W, He SM (2018) Dynamic simulation of a mountain disaster chain: landslides, barrier lakes, and outburst floods. Nat Hazards 90(2):757–775

    Google Scholar 

  • Liu G, Lu X (2000) Analyses on Yigong huge high velocity landslide in Tibet and the cause of formation of debris flows. In: Tibet Science and Technology, pp 15–17 (in Chinese)

    Google Scholar 

  • Lu RR, Tang BX, Zhu PY (1999) Debris flows and environment in Tibet. Sichuan University Publishing House, Chengdu, pp 32–68 (in Chinese)

    Google Scholar 

  • Lucas A, Mangeney A, Ampuero JP (2014) Frictional velocity- weakening in landslides on earth and on other planetary bodies. Nat Commun 5(3417)

  • Manning R (1891) On the flow of water in open channels and pipes. Transactions, Institution of Civil Engineers of Ireland 20:161–207

    Google Scholar 

  • Mehta AJ (1988) Laboratory studies on cohesive sediment deposition and erosion. Physical Processes in Estuaries, Springer Berlin Heidelberg, pp 427–445

  • MiDi GDR (2004) On dense granular flows. Eur Phys J E 14(4):341–365

    Google Scholar 

  • Mitchener H, Torfs H (1996) Erosion of mud/sand mixtures. Coast Eng 29(1-2):1–25

  • Nessyahu H, Tadmor E (1990) Non-oscillatory central differencing for hyperbolic conservation laws. J Comput Phys 87(2):408–463

    Google Scholar 

  • Ockenden MC, Delo E (1988) Consolidation and erosion of estuarine mud and sand mixtures - an experimental study. HR Wallingford, Report No. SR 149

  • Pei R, Ni Z, Meng Z, Zhang B, Liao R (2017) Characteristics of secondary mountain disaster chain in Wenchuan earthquake. Am J Civil Eng 5(6):414–417

    Google Scholar 

  • Roberts J, Jepsen R, Gotthard D, Lick W (1998) Effects of particle size and bulk density on erosion of quartz particles. J Hydraul Eng 124(12):1261–1267

    Google Scholar 

  • Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215

    Google Scholar 

  • Shang Y, Yang Z, Li L, Liu D, Liao Q, Wang Y (2003) A super-large landslide in Tibet in 2000: background, occurrence, disaster, and origin. Geomorphology 54:225–243

    Google Scholar 

  • Smerdon ET, Beasley RT (1961) Critical tractive forces in cohesive soils. Agric Eng 42(1):26–29

    Google Scholar 

  • Sweby PK (1984) High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J Numer Anal 21(5):995–1011

    Google Scholar 

  • Takahashi T (1991) Debris flow. Balkema, Rotterdam

    Google Scholar 

  • Turzewski M, Huntington K, LeVeque R (2019) The geomorphic impact of outburst floods: integrating observations and numerical simulations of the 2000 Yigong flood, Eastern Himalaya. J Geophys Res:Earth Surface 124:1056–1079

    Google Scholar 

  • Vanoni VA (1964) Measurements of critical shear stress for entraining fine sediments in a boundary layer (California Institute of Technology)

  • Walder JS (2016) Dimensionless erosion laws for cohesive sediment. J Hydraul Eng 142(2):1–13

    Google Scholar 

  • Wang ZH (2000) The scientist in Beijing predicted the burst of Yigong Lake correctly. Knowledge of Geography 7:24–26 (in Chinese)

    Google Scholar 

  • Wang Z (2008) A thunder at the beginning of the 21st century – the giant Yigong landslide. Landslides Eng Slopes 2:2111–2118

    Google Scholar 

  • Xu Q, Fan XM, Huang RQ, Westen CV (2009) Landslide dams triggered by the Wenchuan earthquake, Sichuan Province, south west China. Bull Eng Geol Environ 68(3):373–386

    Google Scholar 

  • Xu Q, Shang Y, van Asch T, Wang S, Zhang Z, Dong W (2012) Observations from the large, rapid Yigong rock slide–debris avalanche, southeast Tibet. Can Geotech J 49(5):589–606

    Google Scholar 

  • Yamada M, Kumagai H, Matsushi Y, Matsuzawa T (2013) Dynamic landslide processes revealed by broadband seiemic records. Geophys Res Lett 40:2998–3002

    Google Scholar 

  • Yamada M, Mangeney A, Matsushi Y, Matsuzawa T (2018) Estimation of dynamic friction and movement history of large landslides. Landslides 15(10):1963–1974

    Google Scholar 

  • Yin YP (2000) Characteristics of Bomi- Yigong huge high speed landslide in Tibet and the research on disaster prevention. Hydrogeol Eng Geol 4:8–11 (in Chinese)

    Google Scholar 

  • Zhang L, Xia T, He J, Chen C (2019) Erosion- based analysis of breaching of Baige landslide dams on the Jinsha River, China, in 2018. Landslides 16(10):1965–1979

    Google Scholar 

  • Zhou C (2000) Large scale sand flow with wind in north and heavy rainfall in South China in April 2000. Weather 26(7):58–59 (in Chinese)

    Google Scholar 

  • Zhou GGD, Cui P, Chen HY, Zhu XH, Tang JB, Sun QC (2012) Experimental study on cascading landslide dam failures by upstream flows. Landslides 10(5):633–643

    Google Scholar 

  • Zhou GGD, Ng CWW, Sun QC (2013) A new theoretical method for analyzing confined dry granular flows. Landslides 11(3):369–384

    Google Scholar 

  • Zhou J, Cui P, Hao M (2015a) Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China. Landslides 13(1):39–54

    Google Scholar 

  • Zhou GGD, Cui P, Tang JB (2015b) Experimental study on the triggering mechanisms and kinematic properties of large debris flows in Wenjia Gully. Eng Geol 194:52–61

    Google Scholar 

  • Zhou GGD, Zhou M, Shrestha MS, Song DR, Choi C, Cui KF, Peng M, Shi Z, Zhu X, Chen H (2019) Experimental investigation on the longitudinal evolution of landslide dam breaching and outburst floods. Geomorphology 334:29–43

    Google Scholar 

  • Zhu P, Wang C, Wang Y (2003) Large-scale landslide-debris avalanche in Tibet, China. Formation of an exceptionally serious outburst flood from a landslide dam in Tibet. Landslide News 14-15:23–25

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant nos. 41941017, 41731283), Key Research Program of Frontier Sciences, CAS (grant no. QYZDB-SSW-DQC010), and the Sichuan Science and Technology Planning Program (grant no. 19YYJC0660).

Notations

The following symbols are used in this paper:

a, b coefficients

c solid concentration of the flow

c static bed solid concentration

ce equilibrium concentration

d, ds, d50 sediment particle diameter

E erosion rate

e void ratio

F,G,U,S vectors defined in Eq. (7).

fb total basal traction

fbx x-component of the basal traction

fby y-component of the basal traction

g gravitational acceleration

He distance from the jet nozzle to the equilibrium depth of scour

Hp potential core length from the origin of the jet

h, hw flow height

hs granular mass flow height

kap lateral earth pressure coefficient

Kd coefficient of erodibility

n Manning’s coefficient

P fluid pressure

p porosity of landslide dam

Pc clay content by weight

PI plasticity index

t time

U sliding velocity

u depth- averaged velocity vector

us, uw x-component of depth- averaged velocity

Uw characteristic velocity for the onset of weakening

vs, vw y-component of depth-averaged velocity

zb bed elevation

α, β, η, ξ empirical erosion coefficients

γ specific weight of sediment fluid

γs specific weight of sediment grain

θ Shields parameter

θc critical Sheilds parameter for initiation of sediment movement

μ friction coefficient

μ0 static friction coefficient

μw dynamic friction coefficient

ρ, ρw flow density

\( \overline{\rho},{\rho}_b \) bulk density

ρs granular material density

τ shear stress by the overflow streams

τ0 maximum hydraulic shear stress

τc critical erosive shear resistance of the dam

ϕ internal friction angle

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxu Xie.

Appendix

Appendix

Central differencing schemes are often used to solve nonlinear dynamic equations since they are not linked to the specific eigenstructure of the problem and can thus be implemented in a more straightforward way. The first-order Lax-Friedrichs scheme is the forerunner for such central schemes. The central Nessyahu–Tadmor (NT) scheme offers higher resolution while retaining the simplicity of the Riemann-solver-free approach. Godunov’s original scheme is also the forerunner of all upwind schemes. Though its higher-order and multi-dimensional generalizations were constructed, it requires characteristic information along the discontinuous interfaces of these spatial cells using approximate Riemann solvers, dimensional splitting, etc. which greatly complicates the upwind methods.

In this section, we first briefly introduce the high-resolution scheme on staggered grids over regular square grids- the NT scheme (Nessyahu and Tadmor 1990), which is regarded as a natural extension of the first-order LxF scheme. The cells in the NT scheme alternate every adjacent time step ∆t, The importance of staggering is due to the fact that cell interfaces are stable in neighborhoods around the smooth regular mid-cells of the previous time step (Jiang et al. 1999). The two-dimensional system of conservation laws Equations without source terms are proposed:

$$ \frac{\partial \boldsymbol{U}}{\partial t}+\frac{\partial f\left(\boldsymbol{U}\right)}{\partial x}+\frac{\partial g\left(\boldsymbol{U}\right)}{\partial y}=0 $$
(15)

Lax and Friedrich introduced the first-order stable central scheme, the general Lax-Friedrich scheme:

$$ {{\overline{U}}_{i+\frac{1}{2},j+\frac{1}{2}}}^{n+1}={{\overline{U}}_{i,j}}^n-\lambda \left(f\left({{\overline{U}}_{i+1,j}}^n\left)-f\right({{\overline{U}}_{i,j}}^n\right)\right)-\eta \left(g\left({{\overline{U}}_{i,j+1}}^n\left)-g\right({{\overline{U}}_{i,j}}^n\right)\right) $$
(16)

Here,\( \lambda =\frac{\Delta t}{\Delta x} \) and\( \eta =\frac{\Delta t}{\Delta y} \)denote the mesh ratios of fixed size.

As a first step, we use the piecewise constant solution of the form\( \sum {{\overline{U}}_{ij}}^n{\chi}_{ij}\left(x,y\right) \), in which \( {{\overline{U}}_{ij}}^n \)is the approximate cell average at tn, associated with the cell \( {C}_{ij}=\left\{|x-{x}_i|\le \frac{\Delta x}{2},|y-{y}_j|\le \frac{\Delta y}{2}\right\} \) centered at (xi, yj), xi = ∆x . i,yj = ∆y . j. The function χij(x, y) is the characteristic function of the cell Cij, i.e., \( {\chi}_{ij}\left(x,y\right)={1}_{C_{ij}} \).

We construct a piecewise-linear approximation of the form:

$$ U\left(x,y,{t}^n\right)=\sum \left({\overline{U}}_{ij}+{\overset{\acute{\mkern6mu}}{U}}_{ij}\left(\frac{x-{x}_i}{\Delta x}\right)+{\overset{`}{U}}_{ij}\left(\frac{y-{y}_j}{\Delta y}\right)\right){\chi}_{ij}\left(x,y\right) $$
(17)

where \( {\overset{\acute{\mkern6mu}}{U}}_{ij} \) and \( {\overset{`}{U}}_{ij} \) are discrete slopes in the x, y direction. To guarantee second-order accuracy, \( {\overset{\acute{\mkern6mu}}{U}}_{ij} \) and \( {\overset{`}{U}}_{ij} \) should satisfy:

$$ {\overset{`}{U}}_{ij}\sim \Delta x\cdotp {U}_x\left({x}_i,{y}_j,{t}^n\right)+\mathrm{o}{\left(\Delta x\right)}^2 $$
(18)
$$ {\overset{`}{U}}_{ij}\sim \Delta y\cdotp {U}_y\left({x}_i,{y}_j,{t}^n\right)+\mathrm{o}{\left(\varDelta y\right)}^2 $$
(19)

The second step is to replace the exact solution at next time step tn + 1 by its averages over staggered cells: \( {C}_{i+\frac{1}{2},j+\frac{1}{2}}={I}_{i+\frac{1}{2}}\times {J}_{j+\frac{1}{2}},{C}_{i+\frac{1}{2},j+\frac{1}{2}}=\left\{|x-{x}_{i+\frac{1}{2}}|\le \frac{\varDelta x}{2},|y-{y}_{j+\frac{1}{2}}|\le \frac{\varDelta y}{2}\right\} \), integrate the equation over the staggered control volume \( {C}_{i+\frac{1}{2},j+\frac{1}{2}}\times \left[{t}^n,{t}^{n+1}\right) \) yield:

$$ {\overline{U}}_{i+\frac{1}{2},j+\frac{1}{2}}\left({t}^{n+1}\right)={\overline{U}}_{i+\frac{1}{2},j+\frac{1}{2}}\left({t}^n\right)-\lambda \left(\frac{1}{\mid \varDelta t\mid}\frac{1}{\mid {J}_{j+\frac{1}{2}}\mid }{\int}_{t^n}^{t^{n+1}}{\int}_{J_{j+\frac{1}{2}}}\Big(f\left(U\left({x}_{i+1},y,t\right)\Big)-f\left(U\left({x}_i,y,t\right)\right)\right) dydt\right)-\eta \left(\frac{1}{\mid \varDelta t\mid}\frac{1}{\mid {I}_{i+\frac{1}{2}}\mid }{\int}_{t^n}^{t^{n+1}}{\int}_{I_{i+\frac{1}{2}}}\Big(g\left(U\left(x,{y}_{j+1},t\right)\Big)-g\left(U\left(x,{y}_j,t\right)\right)\right) xdt\right) $$
(20)

Here\( {\overline{U}}_{i+\frac{1}{2},j+\frac{1}{2}}\left({t}^{n+1}\right)=\frac{1}{\left|{C}_{i+\frac{1}{2},j+\frac{1}{2}}\right|}{\iint}_{C_{i+\frac{1}{2},j+\frac{1}{2}}}U\left(x,y,{t}^{n+1}\right) dxdy \), \( {\overline{U}}_{i+\frac{1}{2},j+\frac{1}{2}}\left({t}^n\right)=\frac{1}{\left|{C}_{i+\frac{1}{2},j+\frac{1}{2}}\right|}{\iint}_{C_{i+\frac{1}{2},j+\frac{1}{2}}}U\left(x,y,{t}^n\right) dxdy \) denote the cell averages over staggered grids.

The next step is to evaluate the staggered grid averages \( {\overline{U}}_{i+\frac{1}{2},j+\frac{1}{2}}\left({t}^n\right) \) in Eq. 20:

$$ {\overline{U}}_{i+\frac{1}{2},j+\frac{1}{2}}\left({t}^n\right)=\frac{1}{\left|{C}_{i+\frac{1}{2},j+\frac{1}{2}}\right|}{\iint}_{C_{i+\frac{1}{2},j+\frac{1}{2}}}U\left(x,y,{t}^n\right) dxdy=\sum \limits_{i=1}^4\frac{1}{\mid {A}_i\mid }{\iint}_{A_i}U\left(x,y,{t}^n\right) dxdy $$
(21)

Here, the staggered cell \( {C}_{i+\frac{1}{2},j+\frac{1}{2}} \) can be separated into \( \sum \limits_{i=1}^4{A}_i \), where A1, A2, A3, and A4 represent the cell: \( \left\{\left({x}_i,{x}_{i+\frac{1}{2}}\right)\times \left({y}_{j+\frac{1}{2}},{y}_{j+1}\right)\right\} \), \( \left\{\left({x}_{i+\frac{1}{2}},{x}_{i+1}\right)\times \left({y}_{j+\frac{1}{2}},{y}_{j+1}\right)\right\} \), \( \left\{\left({x}_{i+\frac{1}{2}},{x}_{i+1}\right)\times \left({y}_j,{y}_{j+\frac{1}{2}}\right)\right\} \), and \( \left\{\left({x}_i,{x}_{i+\frac{1}{2}}\right)\times \left({y}_j,{y}_{j+\frac{1}{2}}\right)\right\} \), respectively.

Using the integration over A1for example:

$$ \frac{1}{\mid {A}_1\mid }{\iint}_{A_i}U\left(x,y,{t}^n\right) dxdy=\frac{1}{\mid \varDelta x\mid}\frac{1}{\mid \varDelta y\mid }{\int}_{x_i}^{x_{i+\frac{1}{2}}}{\int}_{y_{j+\frac{1}{2}}}^{y_{j+1}}\left({\overline{U}}_{ij}+{\overset{\acute{\mkern6mu}}{U}}_{ij}\left(\frac{x-{x}_i}{\varDelta x}\right)+{\overset{`}{U}}_{ij}\left(\frac{y-{y}_j}{\varDelta y}\right)\right) dxdy $$
(22)

The other three cell averages can be treated the same way. By adding the four integrals, the value of the staggered average \( {\overline{U}}_{i+\frac{1}{2},j+\frac{1}{2}}\left({t}^n\right) \) can be expressed as:

$$ {\overline{U}}_{i+\frac{1}{2},j+\frac{1}{2}}\left({t}^n\right)=\frac{1}{4}\left({{\overline{U}}_{i,j}}^n+{{\overline{U}}_{i+1,j}}^n+{{\overline{U}}_{i,j+1}}^n+{{\overline{U}}_{i+1,j+1}}^n\right)+\frac{1}{16}\left(\left({\overset{\acute{\mkern6mu}}{U}}_{i,j}+{\overset{\acute{\mkern6mu}}{U}}_{i,j+1}-{\overset{\acute{\mkern6mu}}{U}}_{i+1,j}-{\overset{\acute{\mkern6mu}}{U}}_{i+1,j+1}\right)+\left({\overset{`}{U}}_{i,j}+{\overset{`}{U}}_{i+1,j}-{\overset{`}{U}}_{i,j+1}-{\overset{`}{U}}_{i+1,j+1}\right)\right) $$
(23)

The next step is to approximate the fluxes in equation:

$$ \frac{1}{\mid \varDelta t\mid}\frac{1}{\mid {J}_{j+\frac{1}{2}}\mid }{\int}_{t^n}^{t^{n+1}}{\int}_{J_{j+\frac{1}{2}}}\Big(f\left(U\left({x}_{i+1},y,t\right)\Big)-f\left(U\left({x}_i,y,t\right)\right)\right) dydt $$
$$ \approx \frac{1}{\mid {J}_{j+\frac{1}{2}}\mid }{\int}_{J_{j+\frac{1}{2}}}\left(f\left(U\left({x}_{i+1},y,{t}^{n+\frac{1}{2}}\right)\right)-f\left(U\left({x}_i,y,{t}^{n+\frac{1}{2}}\right)\right)\right) dy $$
$$ \approx \frac{1}{2}\left\{\left(f\left({U_{i+1,j}}^{n+\frac{1}{2}}\right)+f\left({U_{i+1,j+1}}^{n+\frac{1}{2}}\right)\right)-\left(f\left({U_{i,j}}^{n+\frac{1}{2}}\right)+f\left({U_{i,j+1}}^{n+\frac{1}{2}}\right)\right)\right\} $$
$$ \frac{1}{\mid \varDelta t\mid}\frac{1}{\mid {I}_{i+\frac{1}{2}}\mid }{\int}_{t^n}^{t^{n+1}}{\int}_{I_{i+\frac{1}{2}}}\Big(g\left(U\left(x,{y}_{j+1},t\right)\Big)-g\left(U\left(x,{y}_j,t\right)\right)\right) dxdt $$
$$ \approx \frac{1}{\mid {I}_{i+\frac{1}{2}}\mid }{\int}_{I_{i+\frac{1}{2}}}\left(g\left(U\left(x,{y}_{j+1},{t}^{n+\frac{1}{2}}\right)\right)-g\left(U\left(x,{y}_j,{t}^{n+\frac{1}{2}}\right)\right)\right) dx $$
$$ \approx \frac{1}{2}\left\{\left(g\left({U_{i,j+1}}^{n+\frac{1}{2}}\right)+g\left({U_{i+1,j+1}}^{n+\frac{1}{2}}\right)\right)-\left(g\left({U_{i+1,j}}^{n+\frac{1}{2}}\right)+g\left({U_{i,j}}^{n+\frac{1}{2}}\right)\right)\right\} $$
(24)

The staggered form of our central differencing scheme can thus be expressed as:

$$ {\overline{U}}_{i+\frac{1}{2},j+\frac{1}{2}}\left({t}^n\right)=\frac{1}{4}\left({{\overline{U}}_{i,j}}^n+{{\overline{U}}_{i+1,j}}^n+{{\overline{U}}_{i,j+1}}^n+{{\overline{U}}_{i+1,j+1}}^n\right)+\frac{1}{16}\left(\left({\overset{\acute{\mkern6mu}}{U}}_{i,j}+{\overset{\acute{\mkern6mu}}{U}}_{i,j+1}-{\overset{\acute{\mkern6mu}}{U}}_{i+1,j}-{\overset{\acute{\mkern6mu}}{U}}_{i+1,j+1}\right)+\left({\overset{`}{U}}_{i,j}+{\overset{`}{U}}_{i+1,j}-{\overset{`}{U}}_{i,j+1}-{\overset{`}{U}}_{i+1,j+1}\right)\right)-\frac{\lambda }{2}\left\{\left(f\left({U_{i+1,j}}^{n+\frac{1}{2}}\right)-f\left({U_{i,j}}^{n+\frac{1}{2}}\right)\right)+\left(f\left({U_{i+1,j+1}}^{n+\frac{1}{2}}\right)-f\left({U_{i,j+1}}^{n+\frac{1}{2}}\right)\right)\right\} $$
$$ -\frac{\eta }{2}\left\{\left(g\left({U_{i,j+1}}^{n+\frac{1}{2}}\right)-g\left({U_{i,j}}^{n+\frac{1}{2}}\right)\right)+\left(g\left({U_{i+1,j+1}}^{n+\frac{1}{2}}\right)-f\left({U_{i+1,j}}^{n+\frac{1}{2}}\right)\right)\right\} $$
(25)

The values \( f\left({U_{i,j}}^{n+\frac{1}{2}}\right) \) can be evaluated by Taylor’s expansion and conservation law Eq. 15:

$$ {U_{i,j}}^{n+\frac{1}{2}}={{\overline{U}}_{i,j}}^n+\frac{\varDelta t}{2}{U}_t\left({x}_i,{y}_j,{t}^n\right) $$
$$ ={{\overline{U}}_{i,j}}^n-\frac{\varDelta t}{2}{f}_x\left(U\left({x}_i,{y}_j,{t}^n\right)\right)-\frac{\varDelta t}{2}{g}_y\left(U\left({x}_i,{y}_j,{t}^n\right)\right) $$
(26)

Finally, the staggered form can be transformed into non-staggered form. The non-staggered cell averages \( {{\overline{U}}_{i,j}}^{n+1} \) using a similar method:

$$ {{\overline{U}}_{i,j}}^{n+1}=\frac{1}{4\varDelta x\varDelta y}\left({\iint}_{C_{i+\frac{1}{2},j+\frac{1}{2}}}{U_{i+\frac{1}{2},j+\frac{1}{2}}}^{n+1} dxdy+{\iint}_{C_{i-\frac{1}{2},j+\frac{1}{2}}}{U_{i-\frac{1}{2},j+\frac{1}{2}}}^{n+1} dxdy+{\iint}_{C_{i+\frac{1}{2},j-\frac{1}{2}}}{U_{i+\frac{1}{2},j-\frac{1}{2}}}^{n+1} dxdy+{\iint}_{C_{i-\frac{1}{2},j-\frac{1}{2}}}{U_{i-\frac{1}{2},j-\frac{1}{2}}}^{n+1} dxdy\right) $$
(27)

The discrete derivatives\( {\overset{\acute{\mkern6mu}}{U}}_{i,j} \)and staggered derivatives\( {\overset{\acute{\mkern6mu}}{U}}_{i\pm \frac{1}{2},j\pm \frac{1}{2}} \) are computed using a limiter function at timetn:

$$ {\overset{\acute{\mkern6mu}}{U}}_{i,j}= MM\left\{\alpha \left({U}_{i+1.j}-{U}_{i.j}\right),\frac{1}{2}\left({U}_{i+1,j}-{U}_{i-1,j}\right),\alpha \left({U}_{i.j}-{U}_{i-1.j}\right)\right\}\left(1\le \alpha \le 2\right) $$
(28)

Here, MM is the min-mod limiter function:

$$ MM\left\{{a}_1,{a}_2,\dots, {a}_k,\dots \right\}=\left\{\begin{array}{c}\min \left({a}_k\right) if{a}_k>0\forall k\\ {}\max \left({a}_k\right) if{a}_k<0\forall k\\ {}0\kern4.5em otherwise\end{array}\right. $$
(29)

To prevent numerical instabilities, the time steps are computed according to the Courant criterion:

$$ Courant=\frac{1}{2\alpha}\left(\sqrt{4+4\alpha -{\alpha}^2}-4\right)\left(1\le \alpha \le 4\right) $$
$$ dt=\frac{Courant.\mathit{\min}\left(\varDelta x,\varDelta y\right)}{\rho (A)} $$
(30)

Here, ρ(A) is the spectral radius of A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G.G.D., Roque, P.J.C., Xie, Y. et al. Numerical study on the evolution process of a geohazards chain resulting from the Yigong landslide. Landslides 17, 2563–2576 (2020). https://doi.org/10.1007/s10346-020-01448-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-020-01448-w

Keywords

Navigation