Skip to main content
Log in

Epilithozoan fauna associated with ferromanganese crustgrounds on the continental slope segment between Capri and Li Galli Islands (Bay of Salerno, Northern Tyrrhenian Sea, Italy)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The epilithozoan fauna associated with Quaternary Fe–Mn crustgrounds sampled off Capri and Li Galli Islands is described. During the Quaternary, the interplay among the tectonically induced topography, sea-current patterns, and the changing physical-chemical properties of the water column promoted conditions favouring Fe–Mn oxide accumulation. In the samples dredged between 510–263 m depth (DRA 7), 207–201 m depth (DRA 5) and 358–65 m depth (DRA 4), where the Fe–Mn coating covers all rock surfaces, the distribution of the epilithozoan taxa is polarized: on the upper smooth surface of the crustgrounds the most abundant inhabitants are foraminifers, while on the lower rough surface corals, bivalves, bryozoans and brachiopods occur. Sponges are mainly able to bioerode the rough lower surfaces. Samples are riddled by boring ichnogenera including Entobia and Maeandropolydora. Fe–Mn oxide precipitation is still active today as shown by the frontal shield preservation of the bryozoan Puellina cf. pseudoradiata Harmelin and Aristegui, 1988, where it is possible to identify different stages of accretion. Botryoidal ongoing accretion is evident only in some taxa, namely Bryozoa and Polychaeta species, and Foraminifera morphotypes, which appear to keep pace with precipitation when it occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aghib FS, Bernoulli D, Weissert H (1991) Hardground formation in the Bannock Basin, Eastern Mediterranean. Mar Geol 100:103–113

    Article  Google Scholar 

  • Allouc J (1986) Minéralizations ferromanganésifères associées aux sédimentations condensées des pentes continentales de Mediterranée. Mem Soc Geol It 36:201–216

    Google Scholar 

  • Allouc J (1987) Les paléocommunautés profondes sur fond rocheux du Pléistocène Méditerranéen. Description et essai d’interprétation paléoécologique. Geobios 20:241–263

    Google Scholar 

  • Allouc J (1990) Quaternary crusts on slopes of the Mediterranean Sea: a tentative explanation for their genesis. Mar Geol 94:205–238

    Article  Google Scholar 

  • Allouc J, Hilly J, Ghanbaja J, Villemin G (1999) Phénomènes biosédimentaires et genèse des croutes et enduits polymétalliques. L’exemple des dépots hydrogènetiques de la marge ouest africaine et de la Méditerranée. Geobios 32:769–790

    Google Scholar 

  • Astraldi M, Gasparini GP (1994) The seasonal characteristics of the circulation in the Tyrrhenian Sea. In: La Violette PE (ed) Seasonal and Interannual Variability of the Western Mediterranean Sea Coastal and Estuarine Studies. AGU 46:115–134

    Google Scholar 

  • Banerjee R, Roy S, Dasgupta S, Mukhopadhyay S, Miura H (1999) Petrogenesis of ferromanganese nodules from east of the Chagos Archipelago, Central Indian Basin, Indian Ocean. Mar Geol 157:145–158

    Article  Google Scholar 

  • Barrier P, Di Geronimo I, La Perna R, Rosso A, Sanfilippo R, Zibrowius H (1996) Taphonomy of deep-sea hard and soft bottom communities: the Pleistocene of Lazzàro (southern Italy). In: Meléndez Hevia G, Blasco Sancho F, Pérez Urresti I (eds) Comunicación de la II Reunión de Tafonomía y Fosilización. Zaragoza, Spain, pp 39–46

    Google Scholar 

  • Bellan-Santini D, Fredj G, Bellan G (1992) Mise au point sur les connaissances concernant le benthos profond méditerranéen. Oebalia 12:21–36

    Google Scholar 

  • Bernoulli D, McKenzie J (1981) Hardground formation in the Hellenic trench: penesaline to hypersaline marine carbonate diagenesis. Publ Centre National Exploit Oceans (CNEXO). Result Camp Mer 23:197–213

    Google Scholar 

  • Bonardi G, D’Argenio B, Perrone V (1992) Carta geologica dell’Appennino meridionale. Mem Soc Geol It 41:1341

    Google Scholar 

  • Bonatti E, Honorrez J, Joensuu O, Rydell HS (1972) Submarine iron deposits from the Mediterranean Sea. In: Stanley DJ (ed) Symposium on the Sedimentation in the Mediterranean Sea. Hutchinson and Ross. Stroudsburg, USA, 701–710

    Google Scholar 

  • Bromley RG (1975) Trace fossils at omission surfaces. In: Frey RW (ed) The study of trace fossils. Springer-Verlag, New York, 399–428

    Google Scholar 

  • Bromley RG, Allouc J (1992) Trace fossils in bathyal hardgrounds, Mediterranean Sea. Ichnos 2:43–54

    Google Scholar 

  • Corselli C, Basso D, Garzanti E (1994) Paleobiological and sedimentological evidence of Pleistocene/Holocene hiatuses and ironstone formation at the Pontian Islands shelfbreak (Italy). Mar Geol 117:317–328

    Article  Google Scholar 

  • De Carlo EH, Fraley CM (1992) Chemistry and mineralogy of ferromanganese deposits from the equatorial Pacific Ocean. In: Keating BH, Bolton BR (eds) Geology and offshore mineral resources of the central Pacific basin. Circum-Pacific Council for Energy and Mineral Resources. Earth Sciences Series. Springer-Verlag, New York, 14:225–245

  • De Carlo EH, Wen XY, Cowen JP (2000) Rare earth element fractionation in hydrogenetic Fe-Mn crusts: the influence of carbonate complexation and phosphatization on Sm/Yb ratios. In: Glenn CR, Prevot-Lucas L, Lucas J (eds) Marine Authigenesis: from Global to Microbial. SEPM Spec Publ 66:271–285

    Google Scholar 

  • Dugolinsky BK, Margolis SV, Dudley WC (1977) Biogenic influence on growth of manganese nodules. J Sedim Petrol 47:428–445

    Google Scholar 

  • Fischer AG, Garrison RE (1967) Carbonate lithification on the sea floor. J Geol 75:488–496

    Google Scholar 

  • Galil B, Zibrowius H (1998) First benthos samples from Eratosthenes Seamount, eastern Mediterranean. Senckenbergiana maritima 28:111–121

    Google Scholar 

  • Golubic S, Friedmann I, Schneider J, (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sedim Petrol 51:475–478

    Google Scholar 

  • Groupe Escarmed, (1983) Exemples de sedimentation condensee sur les escarpments de la Mer Ionienne (Mediterranée orientale). Observations à partir du submersible «Cyana». Rev Inst fr Pétr 38:427–438

    Google Scholar 

  • Halbach P (1986) Processes controlling the heavy metal distribution in Pacific ferromanganese nodules and crusts. Geol Rund 75:235–247

    Google Scholar 

  • Hein JR, Manheim FT, Schwab WC, Davis AS (1985) Ferromanganese crusts from Necker Ridge. Horizon Guyot and S.P. Lee Guyot: geological considerations. Mar Geol 69:25–54

    Article  Google Scholar 

  • Hein JR, Schwab WC, Davis AS (1988) Cobalt- and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands. Mar Geol 78:255–283

    Article  Google Scholar 

  • Hlawatsch S, Neumann T, Van Der Berg CMG, Kersten M, Harff J, Suess E (2002) Fast-growing, shallow-water ferro-manganese nodules from the western Baltic Sea: origin and modes of trace element incorporation. Mar Geol 182:373–387

    Article  Google Scholar 

  • Jenkyns HC (1970) Fossil manganese nodules from the West Sicilian Jurassic. Eclogae Geol Helv 63:741–774

    Google Scholar 

  • Kasten S, Glasby GP, Schulz HD, Friedrich G, Andreev SI (1998) Rare earth elements in manganese nodules from the South Atlantic Ocean as indicators of oceanic bottom water flow. Mar Geol 146:33–52

    Article  Google Scholar 

  • Keen SL (1987) Recruitment of Aurelia aurita (Cnidaria: Scyphozoa) larvae is position-dependent, and independent of conspecific density, within a settling surface. Mar Ecol 38:151–160

    Google Scholar 

  • Knoop PA, Owen RM, Morgan CL (1998) Regional variability in ferromanganese nodule composition: northeastern tropical Pacific Ocean. Mar Geol 147:1–12

    Google Scholar 

  • Koschinsky A, Halbach P (1995) Sequential leaching of marine ferromanganese precipitates: genetic implications. Geochim Cosmochim Ac 59:5113–5132

    Google Scholar 

  • Koschinsky A, Halbach P, Hein JR, Mangini A (1996) Ferromanganese crusts as indicators for paleoceanographic events in the NE Atlantic. Geol Rund 85:567–576

    Article  Google Scholar 

  • Koschinsky A, Stascheit A, Bau M, Halbach P (1997) Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts. Geochim Cosmochim Ac 19:4079–4094

    Article  Google Scholar 

  • Koschinsky A, Van Gerven M, Halbach P (1995) First investigations of massive ferromanganese crusts in the NE Atlantic in comparison with hydrogenetic Pacific occurrences. Mar Geores and Geotech 13:375–391

    Google Scholar 

  • Krivosheya VG (1983) Water circulation and structure in the Tyrrhenian Sea. Oceanology 23:166–171

    Google Scholar 

  • Krivosheya VG, Ovchinnikov IM (1973) Peculiarities in the geostrophic circulation of the waters of the Tyrrhenian Sea. Oceanology 13:822–827

    Google Scholar 

  • Liebetrau V, Eisenhauer A, Gussone N, Wörner G, Hansen BT, Leipe T (2002) 226Raexcess/Ba growth rates and U-Th-Ra-Ba systematic of Baltic Mn/Fe crusts. Geochim Cosmochim Ac 66:73–83

    Google Scholar 

  • Mangini A, Segl M, Glasby GP, Stoffers P, Plüger WL (1990) Element accumulation rates in and growth histories of manganese nodules from the Southwestern Pacific Basin. Mar Geol 94:98–107

    Article  Google Scholar 

  • McKinney FK, Jackson JBC (1991) Bryozoan evolution. University of Chicago Press, Chicago, 238 pp

    Google Scholar 

  • Meylan MA, Glasby GP, McDougall JC, Singleton RJ (1978) Manganese nodules and associated sediments from the Samoan Basin and passage. NZOI, Field Report 11:1–61

    Google Scholar 

  • Milia A (1999) The geomorphology of Naples Bay continental shelf (Italy). Geog Fis Din Quat 22:73–78

    Google Scholar 

  • Milia A, Torrente MM (1997) Evoluzione tettonica della Penisola Sorrentina (margine tirrenico campano). B Soc Geol It 116:487–502

    Google Scholar 

  • Morten L, Landini F, Bocchi G, Mottana A, Brunfelt AO (1980) Fe-Mn crusts from the southern Tyrrhenian sea. Chem Geol 28:261–278

    Article  Google Scholar 

  • Mukhopadhyay R, Iyer SD, Ghosh AK (2002) The Indian Ocean Nodule Field: petrotectonic evolution and ferromanganese deposits. Earth Sci Rev 60:67–130

    Article  Google Scholar 

  • Mullineaux LS (1987) Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites. Deep-Sea Res 34:165–184

    Article  Google Scholar 

  • Mullineaux LS (1988) The role of settlement in structuring a hard-substratum community in the deep sea. J Exp Mar Biol Ecol 120:247–261

    Article  Google Scholar 

  • Mullineaux LS (1989) Vertical distributions of the epifauna on manganese nodules: implications for settlement and feeding. Limnol and Oceanog 34:1247–1262

    Google Scholar 

  • Murray J, Renard AF (1891) Manganese nodules. In: Thomson CW (ed) Deep-Sea Deposits. Report of the Scientific Results of the Voyage of the HMS Challenger. Eyra and Spottiswoode, London, 5:341–378

  • Pérès JM (1985) History of the Mediterranean biota and the colonization of depths. In: Margalef R (ed) Western Mediterranean. Key Environments. Pergamon Press, Oxford, 198–232

    Google Scholar 

  • Pérès JM, Picard J (1964) Nouveau manuel de bionomie benthique de la Mer Méditérannée. Recl Trav Stn Mar Endoume 31:1–137

    Google Scholar 

  • Picco P (1990) Climatological atlas of the western Mediterranean. ENEA, Santa Teresa Centre for Energy and Environmental Research. La Spezia, Italy, 224 pp

    Google Scholar 

  • Post JE (1999) Manganese oxide minerals: crystal structures and economic environmental significance. PNAS 96:3447–3454

    Article  Google Scholar 

  • Pudsey CJ, Jenkins DG, Curry D (1981) Sedimentology and paleontology of samples from the Hellenic Trench. Mar Geol 44:273–288

    Article  Google Scholar 

  • Puteanus D, Halbach P (1988) Correlation of Co concentration and growth rate – a method for age determination of ferromanganese crusts. Chem Geol 69:73–85

    Article  Google Scholar 

  • Remia A, Montagna P, Taviani M (2004) Submarine diagenetic products on the sediment-starved Gorgona slope, Tuscan Archipelago (Tyrrhenian Sea). Chem Ecol 20:S131–S153

    Article  CAS  Google Scholar 

  • Resig JM, Glenn CR (1997) Foraminifera encrusting phosphoritic hardgrounds of the Peruvian upwelling zone: taxonomy, geochemistry, and distribution. J Foram Res 27:133–150

    Google Scholar 

  • Riemann F (1983) Biological aspects of deep-sea manganese nodule formation. Oceanol Ac 6:303–311

    Google Scholar 

  • Rossi PL, Bocchi G, Lucchini F (1980) A manganese deposit from the South Tyrrhenian region. Oceanol Ac 3:107–113

    Google Scholar 

  • Sartori R (1974) Modern deep-sea magnesian calcite in the Central Tyrrhenian Sea. J Sediment Petrol 44:1313–1322

    Google Scholar 

  • Segl M, Mangini A, Bonani G, Hofmann G, Nessi M, Suter M, Wölfi W, Friedrich G, Plüger W, Wiechowski A, Beer J (1984) 10Be dating of a manganese crust from central North Pacific and implications for ocean paleocirculation. Nature 309:540–543

    Article  Google Scholar 

  • Selli R (1970) Ricerche geologiche preliminari nel Mar Tirreno. Giornale di Geologia 37: 249 pp

    Google Scholar 

  • Sparnocchia S, Gasparini GP, Astraldi M, Borghini M, Pistek P (1999) Dynamics and mixing of the Eastern Mediterranean outflow in the Tyrrhenian basin. J Mar Sys 20:301–317

    Article  Google Scholar 

  • von Stackelberg U(1986) Significance of benthic organisms for the growth and movement of manganese nodules, Equatorial North Pacific. Geo-Marine Lett 4:37–42

    Google Scholar 

  • Strekopytov S, Dubinin A, Uspenskaya T (2000) Geochemical and mineralogical studies of Fe-Mn nodules and crusts from the White Sea: potential role of benthic fauna in their formation. Goldschmidt 2000, Journal of Conference, Oxford, September 3rd–8th, 2000, Abs Vol: 5, 963

  • Taviani M (1998) Axial sedimentation of the Red Sea transitional region (22°–25° N): pelagic gravity flow and sapropel deposition during the Late Quaternary. In: Purser BH, Bosence DWJ (eds) Sedimentation and Tectonics of Rift Basins: Red Sea-Gulf of Aden. Chapman and Hall, London, pp 467–478

    Google Scholar 

  • Taviani M (2002) The Mediterranean benthos from late Miocene up to Present: ten million years of dramatic climatic and geologic vicissitudes. Biol Mar Medit 9:445–463

    Google Scholar 

  • Taviani M, Colantoni P (1984) Paleobiocoenoses profondes a scleractiaires sur l’escarpment de Malte-Siracuse (Mer Mediteraanée): leur structure, leur age et leur signification. Rev Inst fr Pétr 39:547–559

    Google Scholar 

  • Taylor PD, Wilson MA (2002) A new terminology for marine organisms inhabiting hard substrate. Palaios 17:522–525

    Google Scholar 

  • Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth Sci Rev 62:1–103

    Google Scholar 

  • Tebo BM, He LM (1999) Microbially mediated oxidative precipitation reactions. In: Sparks DL, Grundl TJ (eds) Mineral-Water Interfacial Reactions – Kinetics and Mechanisms. Am Chem Soc, Symposium Series: 715:393–414

  • Tendal OS, Hessler RR (1977) An introduction to the biology and systematics of Komokiacea (Textulariina, Foraminiferida). Galathea Rep 14:165–194

    Google Scholar 

  • Tucker ME (1973) Ferromanganese nodules from the Devonian of the Montagne Noire (S. France) and the West Germany. Geol Rund 62:137–153

    Google Scholar 

  • Walters LJ, Wethey DS (1991) Settlement, refuges, and adult body form in colonial marine invertebrates: a field experiment. Biol Bull 180:112–118

    Google Scholar 

  • Ward MA, Thorpe JP (1989) Assessment of space utilization in a subtidal temperate bryozoan community. Mar Biol 103:215–224

    Article  Google Scholar 

  • Ward MA, Thorpe JP (1991) Distribution of encrusting bryozoans and other epifauna on the subtidal bivalve Chlamys opercularis. Mar Biol 110:253–259

    Google Scholar 

  • Wendt J (1974) Encrusting organisms in deep-sea manganese nodules. IAS Spec Publ 1:437–447

    Google Scholar 

  • Yonge CM (1963) Rock-boring organisms. In: Sognnaes RF (ed) Mechanisms of hard tissue destruction. Am Ass Adv Sci 75:1–24

    Google Scholar 

  • Zibrowius H (1980) Les Scléractiniaires de la Méditerranée et de l’Atlantique nord-oriental. Mém Inst océanogr, Monaco 11, p 284

    Google Scholar 

Download references

Acknowledgements

The samples studied in this work were collected during cruise GMS 00–05 organized by the Istituto per l’Ambiente Marino Costiero (IAMC), CNR Naples, on board the R/V Urania. Financial support was provided by projects PRIN 2002 (coordinated by Lucia Simone) and CARG (coordinated by Bruno D’Argenio). The authors thank Paul D. Taylor (Natural History Museum, London) for helping with logistics during the senior author’s visit to London, reviewing an early draft of the manuscript and useful discussions; Richard G. Bromley (Geologisk Institut, Copenhagen) for suggestions on borings; Lauren S. Mullineaux (Woods Hole Oceanographic Institution, Woods Hole, USA) for useful comments and suggestions on an early draft of the manuscript; Marco Sacchi (IAMC, CNR Naples) for allowing us to study the samples; and Domenico Fiorentino (Dipartimento di Scienze della Terra, Naples) for photographic assistance. The authors are grateful to Marco Taviani (ISMAR, CNR, Bologna) and an anonymous reviewer for improving the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Toscano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toscano, F., Raspini, A. Epilithozoan fauna associated with ferromanganese crustgrounds on the continental slope segment between Capri and Li Galli Islands (Bay of Salerno, Northern Tyrrhenian Sea, Italy). Facies 50, 427–441 (2005). https://doi.org/10.1007/s10347-004-0036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-004-0036-3

Keywords

Navigation