Skip to main content
Log in

Dynamic coating for protein separation in cyclic olefin copolymer microfluidic devices

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We report our study on using hydroxyethyl cellulose (HEC) as a dynamic coating for protein separation in microfluidic devices made from cyclic olefin copolymer (COC). The coating significantly enhances hydrophilicity of COC surface, evident from the decrease in contact angle of water in a COC channel. Surface treatment of COC channels with HEC also results in a 72% drop in electroosmotic (EO) mobility and a significant reduction in protein adsorption on the channel wall. Using bovine serum albumin as a model protein, the number of theoretical plates of 1.1 × 104 was achieved in a separation distance of 3.3 cm using free solution electrophoresis. Hydroxyethyl cellulose dynamic coating is also found to have an effect on isoelectric focusing (IEF) of proteins. It not only prevents proteins from adsorption, but also reduces EO flow, both of which help achieve IEF of proteins with a difference of 0.1 pH values in isoelectric points (pI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abad-Villar EM, Tanyanyiwa J, Fernandez-Abedul MT, Costa-Garcia A, Hauser PC (2004) Detection of human immunoglobulin in microchip and conventional capillary electrophoresis with contactless conductivity measurements. Anal Chem 76:1282–1288

    Article  Google Scholar 

  • Anderson RL (1987) Practical statistics for analytical chemists. Van Nostrand Reinhold, New York

    Google Scholar 

  • Baker DR (1995) Capillary electrophoresis. John Wiley, New York

    Google Scholar 

  • Bhattacharyya A, Klapperich CM (2006) Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics. Anal Chem 78:788–792

    Article  Google Scholar 

  • Boone TD, Fan ZH, Hooper HH, Ricco AJ, Tan H, Williams SJ (2002) Plastic advances microfluidic devices. Anal Chem 74:78A–86A

    Article  Google Scholar 

  • Buch JS, Kimball C, Rosenberger F, Highsmith WE, DeVoe DL, Lee CS (2004) DNA mutation detection in a polymer microfluidic network using temperature gradient gel electrophoresis. Anal Chem 76:874–881

    Article  Google Scholar 

  • Castano-Alvarez M, Fernandez-Abedul MT, Costa-Garcia A (2005) Poly(methylmethacrylate) and Topas capillary electrophoresis microchip performance with electrochemical detection. Electrophoresis 26:3160–3168

    Article  Google Scholar 

  • Castano-Alvarez M, Fernandez-Abedul MT, Costa-Garcia A (2006) Amperometric detector designs for capillary electrophoresis microchips. J Chromatogr A 1109:291–299

    Article  Google Scholar 

  • Chen XX, Wu HK, Mao CD, Whitesides GM (2002) A prototype two-dimensional capillary electrophoresis system fabricated in poly(dimethylsiloxane). Anal Chem 74:1772–1778

    Article  Google Scholar 

  • Cui H, Horiuchi K, Dutta P, Ivory CF (2005) Isoelectric focusing in a poly(dimethylsiloxane) microfluidic chip. Anal Chem 77:1303–1309

    Article  Google Scholar 

  • Das C, Fan ZH (2006) Effects of separation length and voltage on isoelectric focusing in a plastic microfluidic device. Electrophoresis 27:3619–3626

    Article  Google Scholar 

  • Das C, Xia Z, Stoyanov A, Fan ZH (2005) A laser-induced fluorescence imaging system for isoelectric focusing. Instrum Sci Technol 33:379–389

    Article  Google Scholar 

  • Das C, Fredrickson CK, Xia Z, Fan ZH (2007) Device fabrication and integration with photodefinable microvalves for protein separation. Sens Actuators A Phys 134:271–277

    Article  Google Scholar 

  • Dittrich PS, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78:3887–3908

    Article  Google Scholar 

  • Esch MB, Kapur S, Irizarry G, Genova V (2003) Influence of master fabrication techniques on the characteristics of embossed microfluidic channels. Lab Chip 3:121–127

    Article  Google Scholar 

  • Fiorini GS, Jeffries GD, Lim DS, Kuyper CL, Chiu DT (2003) Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds. Lab Chip 3:158–163

    Article  Google Scholar 

  • Fredrickson CK, Xia Z, Das C, R.Ferguson, Tavares FT, Fan ZH (2006) Effects of fabrication process parameters on the properties of cyclic olefin copolymer microfluidic devices. J Microelectromech Syst 15:1060–1068

    Article  Google Scholar 

  • Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105:1171–1196

    Article  Google Scholar 

  • Griebel A, Rund S, Schonfeld F, Dorner W, Konrad R, Hardt S (2004) Integrated polymer chip for two-dimensional capillary gel electrophoresis. Lab Chip 4:18–23

    Article  Google Scholar 

  • Herr AE, Molho JI, Drouvalakis KA, Mikkelsen JC, Utz PJ, Santiago JG, Kenny TW (2003) On-chip coupling of isoelectric focusing and free solution electrophoresis for multidimensional separations. Anal Chem 75:1180–1187

    Article  Google Scholar 

  • Hofmann O, Che DP, Cruickshank KA, Muller UR (1999) Adaptation of capillary isoelectric focusing to microchannels on a glass chip. Anal Chem 71:678–686

    Article  Google Scholar 

  • Huang XH, Gordon MJ, Zare RN (1988) Current-monitoring method for measuring the electroosmotic flow-rate in capillary zone electrophoresis. Anal Chem 60:1837–1838

    Article  Google Scholar 

  • Huang B, Wu H, Kim S, Zare RN (2005) Coating of poly(dimethylsiloxane) with n-dodecyl-beta-D-maltoside to minimize nonspecific protein adsorption. Lab Chip 5:1005–1007

    Article  MATH  Google Scholar 

  • Kim DS, Lee SH, Ahn CH, Lee JY, Kwon TH (2006) Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding. Lab Chip 6:794–802

    Article  Google Scholar 

  • Klank H, Kutter JP, Geschke O (2002) CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2:242–246

    Article  Google Scholar 

  • Koh CG, Tan W, Zhao MQ, Ricco AJ, Fan ZH (2003) Integrating polymerase chain reaction, valving, and electrophoresis in a plastic device for bacterial detection. Anal Chem 75:4591–4598

    Article  Google Scholar 

  • Lee DS, Yang H, Chung KH, Pyo HB (2005) Wafer-scale fabrication of polymer-based microdevices via injection molding and photolithographic micropatterning protocols. Anal Chem 77:5414–5420

    Article  Google Scholar 

  • Li Y, Buch JS, Rosenberger F, DeVoe DL, Lee CS (2004) Integration of isoelectric focusing with parallel sodium dodecyl sulfate gel electrophoresis for multidimensional protein separations in a plastic microfludic network. Anal Chem 76:742–748

    Article  Google Scholar 

  • Li C, Yang Y, Craighead HG, Lee KH (2005) Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method. Electrophoresis 26:1800–1806

    Article  Google Scholar 

  • Liu J, Lee ML (2006) Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis. Electrophoresis 27:3533–3546

    Article  Google Scholar 

  • Liu YJ, Ganser D, Schneider A, Liu R, Grodzinski P, Kroutchinina N (2001) Microfabricated polycarbonate CE devices for DNA analysis. Anal Chem 73:4196–4201

    Article  Google Scholar 

  • Liu J, Pan T, Woolley AT, Lee ML (2004) Surface-modified poly(methyl methacrylate) capillary electrophoresis microchips for protein and peptide analysis. Anal Chem 76:6948–6955

    Article  Google Scholar 

  • Macounova K, Cabrera CR, Holl MR, Yager P (2000) Generation of natural pH gradients in microfluidic channels for use in isoelectric focusing. Anal Chem 72:3745–3751

    Article  Google Scholar 

  • Mair DA, Geiger E, Pisano AP, Frechet JM, Svec F (2006) Injection molded microfluidic chips featuring integrated interconnects. Lab Chip 6:1346–1354

    Article  Google Scholar 

  • Mazzeo JR, Krull IS (1991) Capillary isoelectric-focusing of proteins in uncoated fused-silica capillaries using polymeric additives. Anal Chem 63:2852–2857

    Article  Google Scholar 

  • Mela P, van den Berg A, Fintschenko Y, Cummings EB, Simmons BA, Kirby BJ (2005) The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices. Electrophoresis 26:1792–1799

    Article  Google Scholar 

  • Monahan J, Gewirth AA, Nuzzo RG (2001) A method for filling complex polymeric microfluidic devices and arrays. Anal Chem 73:3193–3197

    Article  Google Scholar 

  • Muck A, Wang J, Jacobs M, Chen G, Chatrathi MP, Jurka V, Vyborny Z, Spillman SD, Sridharan G, Schoning MJ (2004) Fabrication of poly(methyl methacrylate) microfluidic chips by atmospheric molding. Anal Chem 76:2290–2297

    Article  Google Scholar 

  • Pugmire DL, Waddell EA, Haasch R, Tarlov MJ, Locascio LE (2002) Surface characterization of laser-ablated polymers used for microfluidics. Anal Chem 74:871–878

    Article  Google Scholar 

  • Raisi F, Belgrader P, Borkholder DA, Herr AE, Kintz GJ, Pourhamadi F, Taylor MT, Northrup MA (2001) Microchip isoelectric focusing using a miniature scanning detection system. Electrophoresis 22:2291–2295

    Article  Google Scholar 

  • Richards DP, Stathakis C, Polakowski R, Ahmadzadeh H, Dovichi NJ (1999) Labeling effects on the isoelectric point of green fluorescent protein. J Chromatogr A 853:21–25

    Article  Google Scholar 

  • Righetti PG, Nembri F (1997) Capillary electrophoresis of peptides in isoelectric buffers. J Chromatogr A 772:203–211

    Article  Google Scholar 

  • Roberts MA, Rossier JS, Bercier P, Girault H (1997) UV laser machined polymer substrates for the development of microdiagnostic systems. Anal Chem 69:2035–2042

    Article  Google Scholar 

  • Rohr T, Ogletree DF, Svec F, Frechet JMJ (2003) Surface functionalization of thermoplastic polymers for the fabrication of microfluidic devices by photoinitiated grafting. Adv Funct Mater 13:264–270

    Article  Google Scholar 

  • Sanders JC, Breadmore MC, Kwok YC, Horsman KM, Landers JP (2003) Hydroxypropyl cellulose as an adsorptive coating sieving matrix for DNA separations: artificial neural network optimization for microchip analysis. Anal Chem 75:986–994

    Article  Google Scholar 

  • Shadpour H, Musyimi H, Chen J, Soper SA (2006) Physiochemical properties of various polymer substrates and their effects on microchip electrophoresis performance. J Chromatogr A 1111:238–251

    Article  Google Scholar 

  • Shimura K (2002) Recent advances in capillary isoelectric focusing: 1997–2001. Electrophoresis 23:3847–3857

    Article  Google Scholar 

  • Shin JY, Park JY, Liu CY, He JS, Kim SC (2005) Chemical structure and physical properties of cyclic olefin copolymers (IUPAC technical report). Pure Appl Chem 77:801–814

    Article  Google Scholar 

  • Shoffner MA, Cheng J, Hvichia GE, Kricka LJ, Wilding P (1996) Chip PCR. I. Surface passivation of microfabricated silicon–glass chips for PCR. Nucleic Acids Res 24:375–379

    Article  Google Scholar 

  • Soper SA, Ford SM, Qi S, McCarley RL, Kelly K, Murphy MC (2000) Polymeric microelectromechanical systems. Anal Chem 72:642A–651A

    Article  Google Scholar 

  • Stachowiak TB, Rohr T, Hilder EF, Peterson DS, Yi M, Svec F, Frechet JM (2003) Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices. Electrophoresis 24:3689–3693

    Article  Google Scholar 

  • Stoyanov AV, Das C, Fredrickson CK, Fan ZH (2005) Conductivity properties of carrier ampholyte pH gradients in isoelectric focusing. Electrophoresis 26:473–479

    Article  Google Scholar 

  • Tan W, Fan ZH, Qiu CX, Ricco AJ, Gibbons I (2002) Miniaturized capillary isoelectric focusing in plastic microfluidic devices. Electrophoresis 23:3638–3645

    Article  Google Scholar 

  • Tian HJ, Landers JP (2002) Hydroxyethylcellulose as an effective polymer network for DNA analysis in uncoated glass microchips: optimization and application to mutation detection via heteroduplex analysis. Anal Biochem 309:212–223

    Article  Google Scholar 

  • Verzola B, Gelfi C, Righetti PG (2000) Quantitative studies on the adsorption of proteins to the bare silica wall in capillary electrophoresis. II. Effects of adsorbed, neutral polymers on quenching the interaction. J Chromatogr A 874:293–303

    Article  Google Scholar 

  • Vogt O, Pfister M, Marggraf U, Neyer A, Hergenroder R, Jacob P (2005) A new two-chip concept for continuous measurements on PMMA-microchips. Lab Chip 5:205–211

    Article  Google Scholar 

  • Wang YC, Choi MH, Han J (2004) Two-dimensional protein separation with advanced sample and buffer isolation using microfluidic valves. Anal Chem 76:4426–4431

    Article  Google Scholar 

  • Woolley AT, Mathies RA (1994) Ultra-high-speed dna fragment separations using microfabricated capillary array electrophoresis chips. Proc Natl Acad Sci USA 91:11348–11352

    Article  Google Scholar 

  • Xiao DQ, Van Le T, Wirth MJ (2004) Surface modification of the channels of poly(dimethylsiloxane) microfluidic chips with polyacrylamide for fast electrophoretic separations of proteins. Anal Chem 76:2055–2061

    Article  Google Scholar 

  • Xu Y, Zhang CX, Janasek D, Manz A (2003) Sub-second isoelectric focusing in free flow using a microfluidic device. Lab Chip 3:224–227

    Article  Google Scholar 

  • Xu F, Jabasini M, Zhu B, Ying L, Cui X, Arai A, Baba Y (2004) Single-step quantitation of DNA in microchip electrophoresis with linear imaging UV detection and fluorescence detection through comigration with a digest. J Chromatogr A 1051:147–153

    Article  Google Scholar 

  • Yang Y, Li C, Kameoka J, Lee KH, Craighead HG (2005) A polymeric microchip with integrated tips and in situ polymerized monolith for electrospray mass spectrometry. Lab Chip 5:869–876

    Article  Google Scholar 

  • Zhang J, Tran NT, Weber J, Slim C, Viovy JL, Taverna M (2006) Poly(N,N-dimethylacrylamide)-grafted polyacrylamide: a self-coating copolymer for sieving separation of native proteins by CE. Electrophoresis 27:3086–3092

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the grant (48461-LS) from Army Research Office and the startup fund from the University of Florida. We also thank Topas Advanced Polymers, Inc. for providing the resins and films used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Hugh Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Das, C. & Fan, Z.H. Dynamic coating for protein separation in cyclic olefin copolymer microfluidic devices. Microfluid Nanofluid 5, 327–335 (2008). https://doi.org/10.1007/s10404-007-0253-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-007-0253-5

Keywords

Navigation