Skip to main content
Log in

Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The separation of multi-walled carbon nanotubes (MWCNTs) and polystyrene microparticles using a dielectrophoresis (DEP) system is presented. The DEP system consists of arrays of parallel microelectrodes patterned on a glass substrate. The performance of the system is evaluated by means of numerical simulations. The MWCNTs demonstrate a positive DEP behaviour and can be trapped at the regions of high electric field. However, the polystyrene microparticles demonstrate a negative DEP behaviour at a certain range of frequencies and migrate to the regions of low electric field. Experiments are performed on the microparticles at the frequencies between 100 Hz and 1 MHz to estimate their crossover frequency and select the range of separation frequencies. Further, experiments are conducted at the obtained range of separation frequencies to separate the MWCNTs and polystyrene microparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59(6, 10):478–490

    Article  Google Scholar 

  • Arruebo M, Fernández-Pacheco R, Ricardo Ibarra M, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nanotoday 2(3):22–32

    Google Scholar 

  • Blasi P, Glovagnoli S, Schoubben A et al (2007) Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev 59:454–477

    Article  Google Scholar 

  • Cui L, Holmes D, Morgan H (2001) The dielectrophoretic levitation and separation of latex beads in microchips. Electrophoresis 22(18):3893–3901

    Article  Google Scholar 

  • Demierre N, Braschler T, Muller R et al (2008) Focusing and continuous separation of cells in a microfluidic device using lateral dielectrophoresis. Sens Actuators B Chem 132(2):388–396

    Article  Google Scholar 

  • Dimaki M, Boggild P (2004) Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study. Nanotechnology 15(8):1095–1102

    Article  Google Scholar 

  • Ermolina I, Milner J, Morgan H (2006) Dielectrophoretic investigation of plant virus particles: Cow Pea Mosaic Virus and Tobacco Mosaic Virus. Electrophoresis 27(20):3939–3948

    Article  Google Scholar 

  • Gascoyne PRC, Vykoukal J (2002) Particle separation by dielectrophoresis. Electrophoresis 23(13):1973–1983

    Article  Google Scholar 

  • Green NG, Morgan H, Milner JJ (1997) Manipulation and trapping of sub-micron bioparticles using dielectrophoresis. J Biochem Biophys Methods 35(2):89–102 Sep 25

    Article  Google Scholar 

  • Grilli S, Ferraro P (2008) Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals. Appl Phys Lett 92(23)

  • Huang JT, Wang GC, Tseng KM et al (2008) A chip for catching, separating, and transporting bio-particles with dielectrophoresis. J Ind Microbiol Biotechnol 35(11):1551–1557

    Article  Google Scholar 

  • Hughes MP, Morgan H, Flynn MF (1999) The dielectrophoretic behavior of submicron latex spheres: influence of surface conductance. J Colloid Interf Sci 220(2):454–457

    Article  Google Scholar 

  • Jia LL, Moorjani SG, Jackson TN et al (2004) Microscale transport and sorting by kinesin molecular motors. Biomed Microdevices 6(1):67–74

    Article  Google Scholar 

  • Kadaksham ATJ, Singh P, Aubry N (2004) Dielectrophoresis of nanoparticles. Electrophoresis 25(21–22):3625–3632

    Article  Google Scholar 

  • Kang YJ, Li DQ, Kalams SA et al (2008) DC-Dielectrophoretic separation of biological cells by size. Biomed Microdevices 10(2):243–249

    Article  Google Scholar 

  • Kim J, Shin YH, Yun JH et al (2008) A nickel silicide nanowire microscopy tip obtains nanoscale information. Nanotechnology 19(48)

  • Klumpp C, Kostarelos K, Prato M et al (2006) Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta Biomembr 1758(3):404–412

    Article  Google Scholar 

  • Krishnan R, Sullivan BD, Mifflin RL et al (2008) Alternating current electrokinetic separation and detection of DNA nanoparticles in high-conductance solutions. Electrophoresis 29(9):1765–1774

    Article  Google Scholar 

  • Krupke R, Hennrich F, Kappes MM, Lohneysen H (2004) Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes. Nano Lett 4(8):1395–1399

    Article  Google Scholar 

  • Kuzyk A, Yurke B, Toppari JJ et al (2008) Dielectrophoretic trapping of DNA origami. Small 4(4):447–450

    Article  Google Scholar 

  • Lapizco-Encinas BH, Simmons BA, Cummings EB et al (2004) Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem 76(6):1571–1579

    Article  Google Scholar 

  • Lapizco-Encinas BH, Ozuna-Chacon S, Rito-Palomares M (2008) Protein manipulation with insulator-based dielectrophoresis and direct current electric fields. J Chromatogr A 1206(1):45–51

    Article  Google Scholar 

  • Lee JH, Kim J, Seo HW et al (2008a) Bias modulated highly sensitive NO2 gas detection using carbon nanotubes. Sens Actuators B Chem 129(2):628–631

    Article  Google Scholar 

  • Lee JW, Moon KJ, Ham MH et al (2008b) Dielectrophoretic assembly of GaN nanowires for UV sensor applications. Solid State Commun 148(5–6):194–198

    Article  Google Scholar 

  • Li HB, Zheng YN, Akin D et al (2005) Characterization and modeling of a microfluidic dielectrophoresis filter for biological species. J Microelectromech Syst 14(1):103–112

    Article  Google Scholar 

  • Mendes MJ, Schmidt HK, Pasquali M (2008) Brownian dynamics simulations of single-wall carbon nanotube separation by type using dielectrophoresis. J Phys Chem B 112(25):7467–7477

    Article  Google Scholar 

  • Morgan H, Hughes MP, Green NG (1999) Separation of submicron bioparticles by dielectrophoresis. Biophys J 77(1):516–525

    Article  Google Scholar 

  • Motayed A, He MQ, Davydov AV et al (2006) Realization of reliable GaN nanowire transistors utilizing dielectrophoretic alignment technique. J Appl Phys 100(11)

  • Nascimento EM, Nogueira N, Silva T et al (2008) Dielectrophoretic sorting on a microfabricated flow cytometer: label free separation of Babesia bovis infected erythrocytes. Bioelectrochemistry 73(2):123–128

    Article  Google Scholar 

  • Parikesit GOF, Markesteijn AP, Piciu OM et al (2008) Size-dependent trajectories of DNA macromolecules due to insulative dielectrophoresis in submicrometer-deep fluidic channels. Biomicrofluidics 2(2)

  • Pesetski AA, Baumgardner JE, Krishnaswamy SV et al (2008) A 500 MHz carbon nanotube transistor oscillator. Appl Phys Lett 93(12)

  • Pohl HA (1978) Dielectrophoresis: the behaviour of neutral matter in nonuniform electric field. Cambridge University Press, Cambridge

    Google Scholar 

  • Rosenthal A, Voldman J (2005) Dielectrophoretic traps for single-particle patterning. Biophys J 88(3):2193–2205

    Article  Google Scholar 

  • Salieb-Beugelaar GB, Teapal J, van Nieuwkasteele J et al (2008) Field-dependent DNA mobility in 20 nm high nanoslits. Nano Lett 8(7):1785–1790

    Article  Google Scholar 

  • Stokes P, Khondaker SI (2008) Local-gated single-walled carbon nanotube field effect transistors assembled by AC dielectrophoresis. Nanotechnology 19(17)

  • Suzuki M, Yasukawa T, Shiku H et al (2007) Negative dielectrophoretic patterning with colloidal particles and encapsulation into a hydrogel. Langmuir 23(7):4088–4094

    Article  Google Scholar 

  • Thostenson ET, Ren ZF, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    Article  Google Scholar 

  • Ueda T, Bhulyan MMH, Norimatsu H et al (2008) Development of carbon nanotube-based gas sensors for NOx gas detection working at low temperature. Physica E Low Dimension Syst Nanostruct 40(7):2272–2277

    Article  Google Scholar 

  • Vahey MD, Voldman J (2008) An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal Chem 80(9):3135–3143 May 1

    Article  Google Scholar 

  • Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454

    Article  Google Scholar 

  • Wang ZY, Hansen O, Petersen PK et al (2006) Dielectrophoresis microsystem with integrated flow cytometers for on-line monitoring of sorting efficiency. Electrophoresis 27(24):5081–5092

    Article  Google Scholar 

  • Xiong X, Busnaina A, Selvarasah S et al (2007) Directed assembly of gold nanoparticle nanowires and networks for nanodevices. Appl Phys Lett 91(6)

  • Yang M, Zhang X (2007) Electrical assisted patterning of cardiac myocytes with controlled macroscopic anisotropy using a microfluidic dielectrophoresis chip. Sens Actuators A Phys 135(1):73–79

    Article  Google Scholar 

  • Yang DJ, Wang SG, Zhang Q et al (2004) Thermal and electrical transport in multi-walled carbon nanotubes. Phys Lett A 329(3):207–213 Aug 23

    Article  MATH  Google Scholar 

  • Yasukawa T, Suzuki M, Sekiya T et al (2007) Flow sandwich-type immunoassay in microfluidic devices based on negative dielectrophoresis. Biosens Bioelectron 22(11):2730–2736

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Khoshmanesh, K., Tovar-Lopez, F.J. et al. Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles. Microfluid Nanofluid 7, 633–645 (2009). https://doi.org/10.1007/s10404-009-0419-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-009-0419-4

Keywords

Navigation