Skip to main content
Log in

Numerical analysis of electrokinetic transport in micro-nanofluidic interconnect preconcentrator in hydrodynamic flow

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The phenomenon of enrichment of charged analytes due to the presence of an electric field barrier at the micro-nanofluidic interconnect can be harnessed to enhance sensitivity and limit-of-detection in sensor instruments. We present a numerical analysis framework to investigate two critical electrokinetic phenomena underlying the experimental observation in Plecis et al. (Micro Total Analysis Systems, pp 1038–1041, 2005b): (1) ion transport of background electrolytes (BGE) and (2) enrichment of analytes in the micro-nanofluidic devices that operate under hydrodynamic flow. The analysis is based on the full, coupled solution of the Poisson–Nernst–Planck (PNP) and Naviér–Stokes equations, and the results are validated against analytical models of simple canonical geometry. Parametric simulation is performed to capture the critical effects of pressure head and BGE ion concentration on the electrokinetics and ion transport. Key findings obtained from the numerical analysis indicate that the hydrodynamic flow and overlapped electrical double layer induce concentration–polarization at the interfaces; significant electric field barrier arising from the Donnan potential forms at the micro–nano interfaces; and streaming potential and overall potential are effectively established across the micro-nanofluidic device. The simulation to examine analyte enrichment and its dependence on the hydrodynamic flow and analyte properties, demonstrates that order-of-magnitude enrichment can be achieved using properly configured hydrodynamic flow. The results can be used to guide practical design and operational protocol development of novel micro-nanofluidic interconnect-based analyte preconcentrators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

c :

Concentration of species and analytes

D :

Molecular diffusivity of species

e :

Elementary charge

E :

Electric field strength

f e :

Electrostatic body force

F :

Faraday constant

\( {\hat{\text{i}}} \) :

Unit vector normal to the channel’s cross-section

I :

Electric current

J :

Species flux

k :

Boltzmann constant

L x :

Channel length

R :

Gas constant

S :

Channel’s cross-section

t :

Time, s

T :

Absolute temperature

u :

Velocity vector

w :

Width of nanochannels/microchannels

x :

Streamwise coordinate

y :

widthwise coordinate

z :

Valence

ε 0 :

Electrical permittivity of the vacuum

ε r :

Relative permittivity

ϕ :

Electrical potential

ϕ s :

Surface potential

κ :

Inverse of Debye length

μ :

Dynamic viscosity of fluid

ν :

Ion mobility

ρ :

Fluid density

ρ e :

Volumetric charge density

σ :

Surface charge density

ω :

Electrophoretic mobility

Γ:

Electrical current density

Ψ:

Distribution of normalized electrical potential

Ψs :

Normalized surface potential

ζ :

Zeta potential

A,B,C :

Analytes A, B, C

anal:

Analyte

bulk:

Bulk solution

conv:

Convection

D :

Diffusion

elec:

Electromigration

i :

The ith species

tot:

Sum of all species

+ :

Positive mono-valence

:

Negative mono-valence

⊥:

Normal component

References

  • Bharadwaj R, Santiago JG (2005) Dynamics of field-amplified sample stacking. J Fluid Mech 543:57–92

    Article  MATH  Google Scholar 

  • Daiguji H, Yang PD et al (2004a) Ion transport in nanofluidic channels. Nano Lett 4(1):137–142

    Article  Google Scholar 

  • Daiguji H, Yang PD et al (2004b) Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett 4(12):2315–2321

    Article  Google Scholar 

  • Daiguji H, Oka Y et al (2005) Nanofluidic diode and bipolar transistor. Nano Lett 5(11):2274–2280

    Article  Google Scholar 

  • Daiguji H, Oka Y et al (2006) Theoretical study on the efficiency of nanofluidic batteries. Electrochem Commun 8(11):1796–1800

    Article  Google Scholar 

  • Ehlert S, Hlushkou D et al (2008) Electrohydrodynamics around single ion-permselective glass beads fixed in a microfluidic device. Microfluid Nanofluid 4(6):471–487

    Article  Google Scholar 

  • Feng JJ, Krishnamoorthy S et al (2006) Simulation of electrokinetic flow and analyte transport in nano channels. 2006 NSTI Nanotechnology Conference and Trade Show, Boston, pp 505–508

  • Huang KD, Yang RJ (2008) Formation of ionic depletion/enrichment zones in a hybrid micro-/nano-channel. Microfluid Nanofluid 5(5):631–638

    Google Scholar 

  • Jin XZ, Joseph S et al (2007) Induced electrokinetic transport in micro-nanofluidic interconnect devices. Langmuir 23(26):13209–13222

    Article  Google Scholar 

  • Kim SM, Burns MA et al (2006) Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Anal Chem 78(14):4779–4785

    Article  Google Scholar 

  • Kim SJ, Wang YC et al (2007) Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys Rev Lett 99(4):044501

    Article  Google Scholar 

  • Leinweber FC, Pfafferodt M et al (2005) Electrokinetic effects on the transport of charged analytes in biporous media with discrete ion-permselective regions. Anal Chem 77(18):5839–5850

    Article  Google Scholar 

  • Lichtenberg J, de Rooij NF et al (2002) Sample pretreatment on microfabricated devices. Talanta 56(2):233–266

    Article  Google Scholar 

  • Mansouri A, Scheuerman C et al (2005) Transient streaming potential in a finite length microchannel. J Colloid Interf Sci 292(2):567–580

    Article  Google Scholar 

  • Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley-Interscience, Hoboken, NJ

    Book  Google Scholar 

  • Patankar SV (1980) Numerical heat transfer and fluid flow. Taylor & Francis, Washington, New York

    MATH  Google Scholar 

  • Plecis A, Schoch RB et al (2005a) Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett 5(6):1147–1155

    Article  Google Scholar 

  • Plecis A, Schoch RB et al (2005b) On-chip separation and concentration processes based on the use of charge selective nanochannels. Micro Total Analysis Systems, Transducers Research Foundation, Boston, MA, USA, pp 1038–1041

  • Probstein RF (2003) Physicochemical hydrodynamics. An introduction. John Wiley & Sons, New York

    Google Scholar 

  • Pu QS, Yun JS et al (2004) Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett 4(6):1099–1103

    Article  Google Scholar 

  • Shackman JG, Ross D (2007) Counter-flow gradient electrofocusing. Electrophoresis 28(4):556–571

    Article  Google Scholar 

  • Sueyoshi K, Kitagawa F et al (2008) Recent progress of online sample preconcentration techniques in microchip electrophoresis. J Separation Sci 31(14):2650–2666

    Article  Google Scholar 

  • Wang YC, Han JY (2008) Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator. Lab Chip 8(3):392–394

    Article  Google Scholar 

  • Wang YC, Stevens AL et al (2005) Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem 77(14):4293–4299

    Article  Google Scholar 

  • Xuan XC, Li DQ (2004) Analysis of electrokinetic flow in microfluidic networks. J Micromech Microeng 14(2):290–298

    Article  Google Scholar 

Download references

Acknowledgment

This research is sponsored by DARPA and US Army Aviation & Missile Command (US Army AMRDEC) under Grant number W31P4Q-07-C-0035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Pant, K., Chen, Z. et al. Numerical analysis of electrokinetic transport in micro-nanofluidic interconnect preconcentrator in hydrodynamic flow. Microfluid Nanofluid 7, 683–696 (2009). https://doi.org/10.1007/s10404-009-0428-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-009-0428-3

Keywords

Navigation