Skip to main content
Log in

Droplet transport through dielectrophoretic actuation using line electrode

  • Brief communication
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We explore a novel transverse line electrode configuration for droplet transport through dielectrophoretic actuation with potential lab-on-chip applications. Using a lumped electromechanical model, we show a weak dependence of DEP actuation force on electrode spacing in this configuration. The configuration successfully triggers translational drop motion with minimal changes in contact angle at considerably low voltages. Two sessile, deionized water drops placed horizontally apart on a indium-tin–oxide-coated glass with additional coatings of polydimethylsiloxane, and a thin layer of Teflon is merged by applying an AC field (88 Vrms at 150 kHz) through a common horizontal wire electrode. A lateral motion of two drops is induced along the horizontal electrode, eventually leading to coalescence. The drop motion is unique compared to electrowetting in its near-constant dynamic contact angle, and irreversibility on withdrawal of electric field. The effect of frequency on the drop behavior is examined through a parametric study on single drops within the range of 2–200 kHz. It is interesting to observe a switch-over from DEP behavior at high frequency to EWOD behavior at low frequency around a critical frequency (Jones in Langmuir 18:4437–4443, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ahmed R, Jones TB (2007) Optimized liquid DEP droplet dispensing. J Micromech Microeng 17:1052–1058

    Article  Google Scholar 

  • Ahmed R, Hsu D, Bailey C, Jones TB (2003) Dispensing picoliter droplets using dielectrophoretic (DEP) micro-actuation International conference on microchannels and minichannels. Rochester, NY

    Google Scholar 

  • Berthier J (2008) Micro-drops and digital microfluidics. William Andrew Publishing, Norwich, NY

    Google Scholar 

  • Blake TD (2006) The physics of moving wetting lines. J Colloid Interface Sci 299:1–13

    Article  Google Scholar 

  • Blake TD, De Coninck J (2002) The influence of solid-liquid interactions on dynamic wetting. Adv Colloid Interface Sci 96:21–36

    Article  Google Scholar 

  • Chen CH, Tsai SL, Chen MK, Jang LS (2011) Effects of gap height, applied frequency, and fluid conductivity on minimum actuation voltage of electrowetting-on-dielectric and liquid dielectrophoresis. Sens Actuators B 159:321–327

    Article  Google Scholar 

  • Cho SK, Moon H, Kim CJ (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting based actuation for digital microfluidic circuits. J Microelectromech Syst 12(1):70–80

    Article  Google Scholar 

  • Chugh D, Kaler KVIS (2010) Integrated liquid and droplet dielectrophoresis for biochemical assays. J Microfluid Nanofluid 8:445–456

    Article  Google Scholar 

  • Eoe JS, Ghadiri M (2003) Drop drop coalescence in an electric fields the effects of applied electric field and electrode geometry. Colloids Surf A Physicochem Eng Asp 219:253–279

    Article  Google Scholar 

  • Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? J Microfluid Nanofluid 3:245–281

    Article  Google Scholar 

  • Griffiths DJ (1998) Introduction to electrodynamics. 3rd edn. Prentice Hall

  • Ichikawa T, Itoh K, Yamamotoa S, Sumita M (2004) Rapid demulsification of dense oil-in-water emulsion by low external electric field 1. Experimental evidence. Colloids Surf A Physicochem Eng Asp 242:21–26

    Article  Google Scholar 

  • Jones TB (1995) Electromechanics of particles. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jones TB (2001) Liquid dielectrophoresis on the microscale. J Electrostatics 51:290–299

    Article  Google Scholar 

  • Jones TB (2002) On the relationship of dielectrophoresis and electrowetting. Langmuir 18:4437–4443

    Article  Google Scholar 

  • Jones TB, Melcher JR (1973) Dynamics of electromechanical flow structures. Phys Fluids 16:393–400

    Article  Google Scholar 

  • Jones TB, Perry MP, Melcher JR (1971) Dielectric siphons. Science 174:1232–1233

    Article  Google Scholar 

  • Jones TB, Gunji M, Washizu M, Feldman M (2001) Dielectrophoretic liquid actuation and nanodrop formation. J Appl Phys 89(2):1441–1448

    Article  Google Scholar 

  • Jones TB, Fowler JD, Chang YS, Kim CJ (2003) Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation. Langmuir 19:7646–7651

    Article  Google Scholar 

  • Jones TB, Wang KL, Yao DJ (2004) Frequency dependent electromechanics of aqueous liquids: electrowetting and dielectrophoresis. Langmuir 20:2813–2818

    Article  Google Scholar 

  • Jones TB, Gram R, Kentch K, Harding DR (2009) Capillarity and dielectrophoresis of liquid deuterium. J Phys D Appl Phys 42:225505

    Article  Google Scholar 

  • Kaler KVIS, Prakash R, Chugh D (2010) Liquid dielectrophoresis and surface microfluidics. Biomicrofluidics 4:022805–022817

    Article  Google Scholar 

  • Kanagasabapathi TT, Kaler KVIS (2007) Surface microfluidics-high-speed DEP liquid actuation on planar substrates and critical factors in reliable actuation. J Micromech Microeng 17:743–752

    Article  Google Scholar 

  • Mesa G, Fuentes ED, Saenz JJ (1996) Image charge methods for electrostatic calculations in field emission diodes. J Appl Phys 79(1):39–44

    Article  Google Scholar 

  • Pellat H (1894) CR Acad Sci (Paris) 119:675

    Google Scholar 

  • Pellat H (1895) Mesure de la force agissant sur les dielectriques liquids non eletrises places dans un champ elitrique. CR Acad Sci Paris 119:691–693

    Google Scholar 

  • Pohl HA (1951) The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys 22:869–871

    Article  Google Scholar 

  • Pohl HA (1978) Dielectrophoresis: the behavior of neutral matter in non uniform electric field. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting based actuation of droplets for integrated microfluidics. Lab Chip 2:96–101

    Article  Google Scholar 

  • Prakash R, Paul R, Kaler KVIS (2010) Liquid DEP actuation and precision dispensing of variable volume droplets. Lab Chip 10:3094–3102

    Article  Google Scholar 

  • Wang KL, Jones TB (2005) Electrowetting dynamics of microfluidic actuation. Langmuir 21:4211–4217

    Article  Google Scholar 

  • Wang W, Jones TB (2011) Microfluidic actuation of insulating liquid droplets in a parallel plate device. J Phys Conf Ser 301:012057

    Article  Google Scholar 

  • Wang KL, Jones TB, Raisanen A (2007) Dynamic control of DEP actuation and droplet dispensing. J Micromech Microeng 17:76–80

    Article  Google Scholar 

  • Woodson HH, Melcher JR (1968) Electromechanical Dynamics. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunando DasGupta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (AVI 1031 kb)

Supplementary material (AVI 3992 kb)

Appendix

Appendix

ς can be related to the viscosity of the liquid η and reversible work of adhesion \(\gamma \,\left( {1 + \cos \theta_{0} } \right)\) as (Blake and De Coninck 2002)

$$\varsigma = \frac{{\eta V_{L} }}{{\lambda^{3} }}{ \exp }\left[ {\frac{{\gamma \lambda^{2} \left( {1 + \cos \theta_{0} } \right)}}{{K_{B} T}}} \right]$$

where V L is the molecular volume of the unit of flow and λ is the jump length. The ratio of ς at different equilibrium contact angles (between the surface used herein, 98o and that reported in Wang et al. 2007; 115°) can be found as

$$\frac{{\varsigma_{1} }}{{\varsigma_{2} }} = { \exp }\left[ {\frac{{\gamma \lambda^{2} }}{{K_{B} T}}\left( {\cos (\theta_{1} ) - \cos (\theta_{2} )} \right)} \right]$$

For θ1 = 98° and θ1 = 115°, \(\varsigma_{98} /\varsigma_{110}\) is about 30.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhaumik, S.K., Das, S., Chakraborty, S. et al. Droplet transport through dielectrophoretic actuation using line electrode. Microfluid Nanofluid 16, 597–603 (2014). https://doi.org/10.1007/s10404-013-1242-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1242-5

Keywords

Navigation