Skip to main content
Log in

Electrokinetic transport of monovalent and divalent cations in silica nanochannels

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Electrokinetic transport of aqueous electrolyte solutions in nanochannels and nanopores is considered important toward the understanding of fundamental ion transport in many biological systems, lab-on-chip, and organ-on-chip devices. Despite the overall importance of these systems and devices, detailed calculations showing velocity and concentration profiles for multi-component, multi-valent ionic species are limited. In this paper, molecular dynamics simulations were employed to compute velocity and concentration profiles for an electrolyte mixture containing sodium, magnesium, and chloride ions with water as the solvent in a ~7-nm-deep amorphous silica nanochannel. The results indicate that addition of trace quantities of divalent Mg2+ ions to monovalent (NaCl) electrolyte solutions while preserving overall system electroneutrality increases the maximum electroosmotic velocity of the solution by almost two times. Additionally, analyzing concentration profiles of individual ions revealed that Na+ was found to be preferentially attracted to the negatively charged silica wall in comparison with Mg2+ likely due to the hydrated divalent cation having a larger size compared to the hydrated monovalent cation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar CA, Craighead HG (2013) Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics. Nat Nanotechnol 8(10):709–718

    Article  Google Scholar 

  • Barthel J, Jaenicke R (1982) B. E. Conway: Ionic Hydration in Chemistry and Biophysics. Vol. 12 aus: Studies in Physical and Theoretical Chemistry. Elsevier Scientific Publishing Company, Amsterdam and New York 1981. 768 Seiten, Berichte der Bunsengesellschaft für physikalische Chemie 86(3):264–264

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684

    Article  Google Scholar 

  • Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  Google Scholar 

  • Bonthuis DJ, Horinek D, Bocquet L, Netz RR (2010) Electrokinetics at aqueous interfaces without mobile charges. Langmuir 26(15):12614–12625

    Article  Google Scholar 

  • Burgess J (1999) Ions in solution—basic principles of chemical interaction. Horwood Publishing, Cambridge

    Google Scholar 

  • Calero C, Faraudo J, Aguilella-Arzo M (2011) Molecular dynamics simulations of concentrated aqueous electrolyte solutions. Mol Simul 37(2):123–134

    Article  Google Scholar 

  • Conlisk AT (2013) Essentials of micro- and nanofluidics. Cambridge University Press, New York

    Google Scholar 

  • Cruz-Chu ER, Aksimentiev A, Schulten K (2006) Water-silica force field for simulating nanodevices. J Phys Chem B 110:21497–21508

    Article  Google Scholar 

  • Datta S, Conlisk AT, Li HF, Yoda M (2009) Effect of divalent ions on electroosmotic flow in microchannels. Mech Res Commun 36:65–74

    Article  MATH  Google Scholar 

  • Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2(4):209–215

    Article  MathSciNet  Google Scholar 

  • Duan C, Karnik R, Lu MC, Majumdar A (2012) Evaporation-induced cavitation in nanofluidic channels. Proc Natl Acad Sci USA 109(10):3688–3693

    Article  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  Google Scholar 

  • Fan R, Karnik R, Yue M, Li D, Majumdar A, Yang P (2005) DNA translocation in inorganic nanotubes. Nano Lett 5(9):1633–1637

    Article  Google Scholar 

  • Flachsbart BR, Wong K, Iannacone JM, Abante EN, Vlach RL, Rauchfuss PA, Bohn PW, Sweedler JV, Shannon MA (2006) Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip 6(5):667–674

    Article  Google Scholar 

  • Freund JB (2002) Electroosmosis in a nanometer-scale channel studied by atomistic simulation. J Comput Phys 116(5):2194–2200

    Google Scholar 

  • Friedl W, Reijenga JC, Kenndler E (1995) Ionic strength and charge number correction for mobilities of multivalent organic anions in capillary electrophoresis. J Chromatogr A 709:163–170

    Article  Google Scholar 

  • Fuest M, Boone C, Conlisk AT, Prakash S (2015a) Cation dependent transport in a field effect nanofluidic device. Transducers. Transducer Research Foundation, Alaska

    Google Scholar 

  • Fuest M, Boone C, Rangharajan KK, Conlisk AT, Prakash S (2015b) A three-state nanofluidic field effect switch. Nano Lett 15(4):2365–2371

    Article  Google Scholar 

  • Gamble T, Decker K, Plett TS, Pevarnik M, Pietschmann J-F, Vlassiouk I, Aksimentiev A, Siwy ZS (2014) Rectification of ion current in nanopores depends on the type of monovalent cations: experiments and modeling. J Phys Chem C 118(18):9809–9819

    Article  Google Scholar 

  • Gavryushov S, Zielenkiewicz P (1998) Electrostatic potential of B-DNA: effect of interionic correlations. Biophys J 75(6):2732–2742

    Article  Google Scholar 

  • Ghiu SMS, Carnahan RP, Barger M (2003) Mass transfer in RO TFC membranes—dependence on the salt physical and thermodynamic parameters. Desalination 157(1–3):385–393

    Article  Google Scholar 

  • Gillespie D (2015) A review of steric interactions of ions: why some theories succeed and others fail to account for ion size. Microfluid Nanofluid 18(5–6):717–738

    Article  MathSciNet  Google Scholar 

  • Gillespie D, Boda D, He Y, Apel P, Siwy ZS (2008) Synthetic nanopores as a test case for ion channel theories: the anomalous mole fraction effect without single filing. Biophys J 95(2):609–619

    Article  Google Scholar 

  • Gracheva ME, Xiong A, Aksimentiev A, Schulten K, Timp G, Leburton JP (2006) Simulation of the electric response of DNA translocation through a semiconductor nanopore–capacitor. Nanotechnology 17(3):622–633

    Article  Google Scholar 

  • Guan W, Li SX, Reed MA (2014) Voltage gated ion and molecule transport in engineered nanochannels: theory, fabrication and applications. Nanotechnology 25(12):19

    Article  Google Scholar 

  • Guissani Y, Guillot B (1996) A numerical investigation of the liquid-vapor coexisistence curve of silica. J Chem Phys 104(19):7633–7644

    Article  Google Scholar 

  • Han J, Craighead H (2000) Separation of long DNA molecules in a microfabricated entropic trap array. Science 288:1026–1029

    Article  Google Scholar 

  • Haria NR, Lorenz CD (2012) Ion exclusion and electrokinetic effects resulting from electro-osmotic flow of salt solutions in charged silica nanopores. Phys Chem Chem Phys 14(17):5935–5944

    Article  Google Scholar 

  • Heng JB, Aksimentiev A, Ho C, Marks P, Grinkova YV, Sligar S, Schulten K, Timp G (2005) Stretching DNA using the electric field in a synthetic nanopore. Nano Lett 5(10):1883–1888

    Article  Google Scholar 

  • Hille B (1992) Ion channels of excitable membranes. Sinauer, Sunderland

    Google Scholar 

  • Hoffmann J, Gillespie D (2013) Ion correlations in nanofluidic channels: effects of ion size, valence, and concentration on voltage and pressure-driven currents. Langmuir 29(4):1303–1317

    Article  Google Scholar 

  • Huff NT, Demiralp E, Cagin T, Goddard WA (1999) Factors affecting molecular dynamics simulated vitreous silica structures. J Non-Cryst Solids 253:133–142

    Article  Google Scholar 

  • Joseph S, Aluru NR (2006) Hierachical multiscale simulation of electrokinetic transport in silica nanochannels at the point of zero charge. Langmuir 22(21):9041–9051

    Article  Google Scholar 

  • Karniadakis G, Beskok A, Aluru N (2001) Microflows: fundamentals and simulation. Springer, New York

    MATH  Google Scholar 

  • Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5(5):943–948

    Article  Google Scholar 

  • Karnik R, Castelino K, Majumdar A (2006) Field-effect control of protein transport in a nanofluidic transistor circuit. Appl Phys Lett 88:1–3

    Article  Google Scholar 

  • Karnik R, Duan C, Castelino K, Daiguji H, Majumdar A (2007) Rectification of ionic current in a nanofluidic diode. Nano Lett 7(3):547–551

    Article  Google Scholar 

  • Kemery PJ, Steehler JK, Bohn PW (1998) Electric field mediated transport in nanometer diameter channels. Langmuir 14:2884–2889

    Article  Google Scholar 

  • Kim D, Darve E (2006) Molecular dynamics simulation of electroosmotic flows in rough wall nanochannels. Phys Rev E 73:051203

    Article  Google Scholar 

  • Kim SJ, Ko SH, Kang KH, Han J (2010) Direct seawater desalination by ion concentration polarization. Nat Nanotechnol 5:297–301

    Article  Google Scholar 

  • Koneshan S, Rasaiah JC, Lynden-Bell RM, Lee SH (1998) Solvent structure, dynamics and ion mobility in aqueous solutions at 25 C. J Phys Chem B 102:4193–4204

    Article  Google Scholar 

  • Kowalczyk SW, Wells DB, Aksimentiev A, Dekker C (2012) Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett 12:1038–1044

    Article  Google Scholar 

  • Kuo TC, Cannon DM, Chen Y, Tulock JJ, Shannon MA, Sweedler JV, Bohn PW (2003a) Gateable nanofluidic interconnects for multilayered microfluidic separation systems. Anal Chem 75(8):1861–1867

    Article  Google Scholar 

  • Kuo TC, Cannon DM Jr, Shannon MA, Bohn PW, Sweedler JV (2003b) Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sens Actuators A 102:223–233

    Article  Google Scholar 

  • Larentzos JP, Criscenti LJ (2008) A molecular dynamics study of alkaline earth metal-chloride complexation in aqueous solution. J Phys Chem B 112(45):14243–14250

    Article  Google Scholar 

  • Lee J, Laoui T, Karnik R (2014) Nanofluidic transport governed by the liquid/vapour interface. Nat Nanotechnol 9(4):317–323

    Article  Google Scholar 

  • Li SX, Guan W, Weiner B, Reed MA (2015) Direct observation of charge inversion in divalent nanofluidic devices. Nano Lett 15(8):5046–5051

    Article  Google Scholar 

  • Lorenz CD, Crozier PS, Anderson JA, Travesset A (2008) Molecular dynamics of ionic transport and electrokinetic effects in realistic silica channels. J Phys Chem C 112:10222–10232

    Article  Google Scholar 

  • Mammen M, Carbeck JD, Simanek EE, Whitesides GM (1997) Treating electrostatic shielding at the surface of silica as discrete siloxide-cation interactions. J Am Chem Soc 119(15):3469–3476

    Article  Google Scholar 

  • Nightingale ER (1959) Phenomenological theory of ion solvation. Effective radii of hydrated ions. J Phys Chem 63(9):1381–1387

    Article  Google Scholar 

  • Nishizawa M, Menon V, Martin C (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268:700–702

    Article  Google Scholar 

  • Prakash S, Yeom J (2014) Nanofluidics and microfluidics: systems and applications. Elsevier, Amsterdam

    Google Scholar 

  • Prakash S, Long TM, Selby JC, Moore JS, Shannon MA (2007) “Click” modification of silica surfaces and glass microfluidic channels. Anal Chem 79:1661–1667

    Article  Google Scholar 

  • Prakash S, Piruska A, Gatimu EN, Bohn PW, Sweedler JV, Shannon MA (2008) Nanofluidics: systems and applications. IEEE Sens J 8(5):441–450

    Article  Google Scholar 

  • Prakash S, Karacor MB, Banerjee S (2009) Surface modification in microsystems and nanosystems. Surf Sci Rep 64(7):233–254

    Article  Google Scholar 

  • Prakash S, Pinti M, Bhushan B (2012) Theory fabrication and applications of microfluidic and nanofluidic biosensors. Philos Trans R Soc A 370(1967):2269–2303

    Article  Google Scholar 

  • Prakash S, Zambrano HA, Fuest M, Boone C, Rosenthal-Kim E, Vasquez N, Conlisk AT (2015) Electrokinetic transport in silica nanochannels with asymmetric surface charge. Microfluid Nanofluidics 16(6):1455–1464

    Article  Google Scholar 

  • Qiao R, Aluru NR (2003) Ion concentrations and velocity profiles in nanochannel electroosmotic flows. J Chem Phys 118(10):4692–4701

    Article  Google Scholar 

  • Qiao R, Aluru NR (2005) Surface-charge-induced asymmetric electrokinetic transport in confined silicon nanochannels. Appl Phys Lett 86(14):1–3

    Article  Google Scholar 

  • Qiao R, Georgiadis JG, Aluru NR (2006) Differential ion transport induced electroosmosis and internal recirculation in heterogeneous osmosis membranes. Nano Lett 6(5):995–999

    Article  Google Scholar 

  • Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32(5):751–767

    Article  MathSciNet  Google Scholar 

  • Siria A, Poncharal P, Biance A-L, Fulcrand R, Blase X, Purcell ST, Bocquet L (2013) Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494:455–458

    Article  Google Scholar 

  • Siwy ZS, Powell MR, Petrov A, Kalman E, Trautmann C, Eisenberg RS (2006) Calcium-induced voltage gating in single conical nanopores. Nano Lett 6(8):1729–1734

    Article  Google Scholar 

  • Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett 93:035901

    Article  Google Scholar 

  • Swaminathan VV, Gibson LR II, Pinti M, Prakash S, Bohn PW, Shannon MA (2012) Ionic transport in nanocapillary membrane systems. J Nanopart Res 14(8):951–965

    Article  Google Scholar 

  • Tansel B (2012) Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Sep Purif Technol 86:119–126

    Article  Google Scholar 

  • Tansel B, Sager J, Rector T, Garland J, Strayer RF, Levine L, Roberts M, Hummerick M, Bauer J (2006) Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep Purif Technol 51(1):40–47

    Article  Google Scholar 

  • Tsuneyuki S, Tsukada M, Aoki H, Matsui Y (1988) First-principles interatomic potential of silica applied to molecular dynamics. Phys Rev Lett 61(7):869–874

    Article  Google Scholar 

  • Tybrandt K, Forchheimer R, Berggren M (2012) Logic gates based on ion transistors. Nature Communications 3:871

    Article  Google Scholar 

  • Vlachy V (2001) Ion-partitioning between charge capillaries and bulk electrolyte solution: an example of negative ‘rejection’. Langmuir 17(2):399–402

    Article  Google Scholar 

  • Vlachy V, Haymet ADJ (1989) Electrolytes in charged micropores. J Am Chem Soc 111(2):477–481

    Article  Google Scholar 

  • Vlassiouk I, Kozel TR, Siwy ZS (2009) Biosensing with Nanofluidic Diodes. J Am Chem Soc 131(23):8211–8220

    Article  Google Scholar 

  • Walther JH, Jaffe R, Halicioglu T, Koumoutsakos P (2001) Carbon nanotubes in water: structural characteristics and energetics. J Phys Chem B 105:9980–9987

    Article  Google Scholar 

  • Wang H, Nandigana VV, Jo KD, Aluru NR, Timperman AT (2015) Controlling the ionic current rectification factor of a nanofluidic/microfluidic interface with symmetric nanocapillary interconnects. Anal Chem 87:3598–3605

    Article  Google Scholar 

  • Yeh I-C, Berkowitz ML (1999) Ewald summation for systems with slab geometry. J Chem Phys 111(7):3155–3162

    Article  Google Scholar 

  • Yoshida H, Mizuno H, Kinjo T, Washizu H, Barrat J-L (2014) Molecular dynamics simulation of electrokinetic flow of an aqueous electrolyte solution in nanochannels. J Chem Phys 140:214701

    Article  Google Scholar 

  • Zambrano HA, Conlisk AT (2013) Controlling the electroosmotic transport in nanochannels: effect of divalent counter-ions. In: 51st AIAA aerospace sciences conference. Grapevine (Dallas/Fort Worth Region), TX, pp 1–12

  • Zambrano HA, Pinti M, Conlisk AT, Prakash S (2012) Electrokinetic transport in a water–chloride nanofilm in contact with a silica surface with discontinuous charged patches. Microfluid Nanofluid 13(5):735–747

    Article  Google Scholar 

  • Zambrano HA, Walther JH, Jaffe RL (2014) Molecular dynamics simulations of water on a hydrophilic silica surface at high air pressures. J Mol Liq 198:107–113

    Article  Google Scholar 

  • Zhang H, Hassanali AA, Shin YK, Knight C, Singer SJ (2011) The water-amorphous silica interface: analysis of the Stern layer and surface conduction. J Comput Phys 134:1–13

    Google Scholar 

  • Zheng Z, Hansford DJ, Conlisk AT (2003) Effect of multivalent ions on electroosmotic flow in micro- and nanochannels. Electrophoresis 24(17):3006–3017

    Article  Google Scholar 

  • Zhu W, Singer SJ, Zheng Z, Conlisk AT (2005) Electro-osmotic flow of a model electrolyte. Phys Rev E 71:041501

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge partial financial support from Defense Advanced Research Projects Agency (DARPA) through the US Army Research Office (ARO) Grant W911NF09C0079, the US Army Research Office (ARO) for Grant W911NF1010290, and NSF CBET-1335946. Nicolas Vasquez acknowledges support from CONICYT through Scholarship Number 221321041. The authors also acknowledge discussions with Jim Giuliani in Mechanical Engineering at OSU and the computational support from the Ohio Supercomputer Center (OSC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaurya Prakash or A. T. Conlisk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, S., Zambrano, H.A., Rangharajan, K.K. et al. Electrokinetic transport of monovalent and divalent cations in silica nanochannels. Microfluid Nanofluid 20, 8 (2016). https://doi.org/10.1007/s10404-015-1667-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-015-1667-0

Keywords

Navigation