Skip to main content
Log in

In Vitro Comparison of the Effect of Stent Configuration on Wall Shear Stress Using Time-resolved Particle Image Velocimetry

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Time resolved particle image velocimetry was used to measure wall shear stress (WSS) and oscillatory shear index (OSI) within a 3.0 mm diameter compliant vessel model implanted with an Abbott Vascular XIENCE V® stent in five configurations: baseline, over-expanded, increased vessel diameter, two overlapped stents, and increased stent length. Flow through unstented vessels was also tested for comparison. Flow conditions featured a realistic coronary pressure-flow offset and reversal at average flow rates corresponding to resting (Re = 160, f = 70 bpm) and exercise conditions (Re = 300, f = 120 bpm). Comparisons revealed that the WSS was similar for all cases behind the first strut and downstream of the device, indicating that changes in configuration have little effect downstream. However, there were notable differences within each stent revealing reduced WSS values for all cases due to the stent-imposed expansion of the vessel wall (0.20–9.29 dynes/cm2 for Re = 160 and d = 3.0 mm). Over-expanding the stent with a second balloon affected the alignment of the stent geometry, and led to higher WSS at the inlet and lower values at mid-stent. The overlapped stents showed disturbed flow and a WSS deficit region downstream of the overlapped region. Analysis of the longer stent showed that the WSS within the vessel recovers with distance. An overall correlation was noted between decreased WSS values and elevated OSI. Results of this study are important because decreased WSS has been implicated in endothelial cell changes and increased restenosis, and clinical research has shown that a link exists between deployment configurations and negative patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Abiven, C., and P. P. Vlachos. Super spatio-temporal resolution, digital PIV system for multi-phase flows with phase differentiation and simultaneous shape and size quantification. 2002 Proceedings of the ASME IMECE, New Orleans, Louisiana, USA, ASME, 2002.

  2. Adrian, R. J. Twenty years of particle image velocimetry. Exp. Fluids 39:159–169, 2005.

    Article  Google Scholar 

  3. Al Suwaidi, J., P. B. Berger, C. S. Rihal, K. N. Garratt, M. R. Bell, H. H. Ting, J. F. Bresnahan, D. E. Grill, and D. R. Holmes. Immediate and long-term outcome of intracoronary stent implantation for true bifurcation lesions. J. Am. Coll. Cardiol. 35:929–936, 2000.

    Article  PubMed  CAS  Google Scholar 

  4. Anderson, R. U.S. Decennial Life Tables for 1989–91, Vol. 1, No. 4, Eliminating Certain Causes of Death, 1989–91. Hyattsville, MD: National Center for Health Statistics, 1999.

  5. Balossino, R., F. Gervaso, F. Migliavacca, and G. Dubini. Effects of different stent designs on local hemodynamics in stented arteries. J. Biomech. 41:1053–1061, 2008.

    Article  PubMed  Google Scholar 

  6. Benard, N., D. Coisne, E. Donal, and R. Perrault. Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intra-stent wall shear stress. J. Biomech. 36:991–998, 2003.

    Article  PubMed  Google Scholar 

  7. Berkooz, G., P. Holmes, and J. L. Lumley. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25:539–575, 1993.

    Article  Google Scholar 

  8. Berry, J. L., J. E. Moore, V. S. Newman, and W. D. Routh. In vitro flow visualization in stented arterial segments. J. Vasc. Invest. 3:63–68, 1997.

    Google Scholar 

  9. Berry, J., A. Santamarina, J. Moore, S. Roychowdhury, and W. Routh. Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng. 28:386–398, 2000.

    Article  PubMed  CAS  Google Scholar 

  10. Bowers, C. D., and P. S. Hrnjak. Using change point analysis for image processing of developing adiabatic two-phase flow after expansion valve. Proceedings of the 5th Joint ASME/JSME Fluids Engineering Conference (FEDSM2007), San Diego, CA, USA, ASME, 2007.

  11. Charonko, J. J., S. Karri, J. Schmieg, S. Prabhu, and P. P. Vlachos. In-vitro, time-resolved PIV comparison of the effect of stent design on WSS. Ann. Biomed. Eng. 37:1310–1321, 2009.

    Article  PubMed  Google Scholar 

  12. Charonko, J. J., S. A. Ragab, and P. P. Vlachos. A scaling parameter for predicting pressure wave reflection in stented arteries. J. Med. Dev. 3:11006-011006-10, 2009.

    Google Scholar 

  13. Charonko, J. J., and P. P. Vlachos. Improvements to the dynamic range of velocity measurements using DPIV. Proceedings of the 2006 ASME Joint U.S.-European Fluids Engineering Summer Meeting, Miami, FL, 2006.

  14. Chiu, J., L. Chen, C. Chen, P. Lee, and C. Lee. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J. Biomech. 37:531–539, 2004.

    Article  PubMed  Google Scholar 

  15. Duraiswamy, N., R. T. Schoephoerster, M. R. Moreno, and James. E. Moore, Jr. Stented artery flow patterns and their effects on the artery wall. Annu. Rev. Fluid Mech. 39:357–382, 2006.

    Article  Google Scholar 

  16. Eckstein, A., and P. P. Vlachos. Digital particle image velocimetry (DPIV) robust phase correlation. Meas. Sci. Technol. 20:055401, 2009.

    Article  CAS  Google Scholar 

  17. Edelman, E. R., and C. Rogers. Pathobiologic responses to stenting. Am. J. Cardiol. 81:4E–6E, 1998.

    Article  PubMed  CAS  Google Scholar 

  18. Edelman, E. R., and C. Rogers. Stent-versus-stent equivalency trials: Are some stents more equal than others? Circulation 100:896–898, 1999.

    PubMed  CAS  Google Scholar 

  19. El-Omar, M., G. Dangas, I. Iakovou, and R. Mehran. Update on in-stent restenosis. Curr. Intervent. Cardiol. Rep. 3:296–305, 2001.

    Google Scholar 

  20. Finn, A. V., M. Joner, G. Nakazawa, F. Kolodgie, J. Newell, M. C. John, H. K. Gold, and R. Virmani. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation 115:2435–2441, 2007.

    Article  PubMed  Google Scholar 

  21. Fischman, D. L., M. B. Leon, D. S. Baim, R. A. Schatz, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N. Engl. J. Med. 331:496–501, 1994.

    Article  PubMed  CAS  Google Scholar 

  22. Friedman, M. H., and O. J. Deters. Correlation among shear rate measures in vascular flows. J. Biomech. Eng. 109:25–26, 1987.

    Article  PubMed  CAS  Google Scholar 

  23. Grube, E., S. Silber, K. E. Hauptmann, R. Mueller, L. Buellesfeld, U. Gerckens, and M. E. Russell. TAXUS I: six- and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. Circulation 107:38–42, 2003.

    Article  PubMed  CAS  Google Scholar 

  24. Hain, R., and C. Kähler. Fundamentals of multiframe particle image velocimetry (PIV). Exp. Fluids 42:575–587, 2007.

    Article  Google Scholar 

  25. Hinkley, D. V. Inference about the change-point from cumulative sum tests. Biometrika 58:509–523, 1971.

    Article  Google Scholar 

  26. Hopkins, R. Lehman drug-eluting stent survey results. Medical supplies and devices industry update. Lehman Brothers Equity Research, 2003.

  27. Huo, Y., T. Wischgoll, and G. S. Kassab. Flow patterns in three-dimensional porcine epicardial coronary arterial tree. Am. J. Physiol. Heart Circ. Physiol. 293:H2959–H2970, 2007.

    Article  PubMed  CAS  Google Scholar 

  28. Joner, M., G. Nakazawa, A. V. Finn, S. C. Quee, et al. Endothelial cell recovery between comparator polymer-based drug-eluting stents. J. Am. Coll. Cardiol. 52:333–342, 2008.

    Article  PubMed  CAS  Google Scholar 

  29. Karri, S., J. Charonko, and P. P. Vlachos. Robust wall gradient estimation using radial basis functions and proper orthogonal decomposition (POD) for particle image velocimetry (PIV) measured fields. Meas. Sci. Technol. 20:045401, 2009.

    Article  CAS  Google Scholar 

  30. Kastrati, A., J. Mehilli, J. Dirschinger, F. Dotzer, et al. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 103:2816–2821, 2001.

    PubMed  CAS  Google Scholar 

  31. Kastrati, A., J. Mehilli, J. Dirschinger, J. Pache, et al. Restenosis after coronary placement of various stent types. Am. J. Cardiol. 87:34–39, 2001.

    Article  PubMed  CAS  Google Scholar 

  32. Kleinstreuer, C., S. Hyun, J. R. Buchanan, P. W. Longest, J. P. Archie, and G. A. Truskey. Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit. Rev. Biomed. Eng. 29:1–64, 2001.

    PubMed  CAS  Google Scholar 

  33. LaDisa, J. F., I. Guler, L. E. Olson, D. A. Hettrick, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann. Biomed. Eng. 31:972–980, 2003.

    Article  PubMed  Google Scholar 

  34. LaDisa, J. F., L. E. Olson, I. Guler, D. A. Hettrick, S. H. Audi, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J. Appl. Physiol. 97:424–430, 2004.

    Article  PubMed  Google Scholar 

  35. LaDisa, J. F., L. E. Olson, I. Guler, D. A. Hettrick, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models. J. Appl. Physiol. 98:947–957, 2005.

    Article  PubMed  Google Scholar 

  36. Lee, S. W., L. Antiga, and D. A. Steinman. Correlation among hemodynamic parameters at the carotid bifurcation. Proceedings of the 2008 Summer Bioengineering Conference, Marco Island, FL, USA, ASME, 2008.

  37. Lewis, G. Materials, fluid dynamics, and solid mechanics aspects of coronary artery stents: a state-of-the-art review. J. Biomed. Mater. Res. B Appl. Biomater. 86B:569–590, 2008.

    Article  PubMed  CAS  Google Scholar 

  38. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.

    Article  PubMed  CAS  Google Scholar 

  39. Nakazawa, G., A. V. Finn, M. C. John, F. D. Kolodgie, and R. Virmani. The significance of preclinical evaluation of sirolimus-, paclitaxel-, and zotarolimus-eluting stents. Am. J. Cardiol. 100:S36–S44, 2007.

    Article  CAS  Google Scholar 

  40. Nakazawa, G., A. V. Finn, and R. Virmani. Drug-eluting stent pathology–Should we still be cautious? Nat. Clin. Pract. Cardiovasc. Med. 5:1, 2008.

    Article  PubMed  Google Scholar 

  41. Natarajan, S., and M. R. Mokhtarzadeh-Dehghan. A numerical and experimental study of periodic flow in a model of a corrugated vessel with application to stented arteries. Med. Eng. Phys. 22:555–566, 2000.

    Article  PubMed  CAS  Google Scholar 

  42. Orlic, D., E. Bonizzoni, G. Stankovic, F. Airoldi, et al. Treatment of multivessel coronary artery disease with sirolimus-eluting stent implantation: immediate and mid-term results. J. Am. Coll. Cardiol. 43:1154–1160, 2004.

    Article  PubMed  CAS  Google Scholar 

  43. Ozolanta, I., G. Tetere, B. Purinya, and V. Kasyanov. Changes in the mechanical properties, biochemical contents and wall structure of the human coronary arteries with age and sex. Med. Eng. Phys. 20:523–533, 1998.

    Article  PubMed  CAS  Google Scholar 

  44. Pahakis, M. Y., J. R. Kosky, R. O. Dull, and J. M. Tarbell. The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem. Biophys. Res. Commun. 355:228–233, 2007.

    Article  PubMed  CAS  Google Scholar 

  45. Pereira, F., A. Ciarravano, G. P. Romano, and F. Di Felice. Adaptive multi-frame PIV. 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, July 2004, pp. 12–15.

  46. Pfisterer, M., H. P. Brunner-La Rocca, P. T. Buser, P. Rickenbacher, et al. Late clinical events after clopidogrel discontinuation may limit the benefit of drug-eluting stents: an observational study of drug-eluting versus bare-metal stents. J. Am. Coll. Cardiol. 48:2584–2591, 2006.

    Article  PubMed  CAS  Google Scholar 

  47. Qiu, Y., and J. M. Tarbell. Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. J. Biomech. Eng. 122:77–85, 2000.

    Article  PubMed  CAS  Google Scholar 

  48. Rosamond, W., K. Flegal, G. Friday, K. Furie, et al. Heart disease and stroke statistics—2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115:e69–e171, 2007.

    Article  PubMed  Google Scholar 

  49. Smith, T. R., J. Moehlis, and P. Holmes. Low-dimensional modelling of turbulence using the proper orthogonal decomposition: a tutorial. Nonlinear Dyn. 41:275–307, 2005.

    Article  Google Scholar 

  50. Steinman, D. A., J. B. Thomas, H. M. Ladak, J. S. Milner, B. K. Rutt, and J. D. Spence. Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn. Reson. Med. 47:149–159, 2002.

    Article  PubMed  Google Scholar 

  51. Stone, P. H., A. U. Coskun, S. Kinlay, M. E. Clark, et al. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation 108:438–444, 2003.

    Article  PubMed  Google Scholar 

  52. Stone, P. H., A. U. Coskun, S. Kinlay, J. J. Popma, et al. Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: an in vivo serial study. Eur. Heart J. 28:705–710, 2007.

    Article  PubMed  Google Scholar 

  53. Topol, E. J. Coronary-artery stents—gauging, gorging, and gouging. N. Engl. J. Med. 339:1702–1704, 1998.

    Article  PubMed  CAS  Google Scholar 

  54. Topol, E. J., and P. W. Serruys. Frontiers in interventional cardiology. Circulation 98:1802–1820, 1998.

    PubMed  CAS  Google Scholar 

  55. Tortoriello, A., and G. Pedrizzetti. Flow-tissue interaction with compliance mismatch in a model stented artery. J. Biomech. 37:1–11, 2004.

    Article  PubMed  Google Scholar 

  56. Wentzel, J. J., F. J. H. Gijsen, N. Stergiopulos, P. W. Serruys, C. J. Slager, and R. Krams. Shear stress, vascular remodeling and neointimal formation. J. Biomech. 36:681–688, 2003.

    Article  PubMed  Google Scholar 

  57. Wereley, S. T., and C. D. Meinhart. Second-order accurate particle image velocimetry. Exp. Fluids 31:258–268, 2001.

    Article  Google Scholar 

  58. Yao, Y., A. Rabodzey, and C. F. Dewey. Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am. J. Physiol. Heart Circ. Physiol. 293:H1023–H1030, 2007.

    Article  PubMed  CAS  Google Scholar 

  59. Yazdani, S. K., J. Moore, J. L. Berry, and P. P. Vlachos. DPIV measurements of flow disturbances in stented artery models: adverse affects of compliance mismatch. J. Biomech. Eng. 126:559–566, 2004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Abbott Vascular provided partial support for this research. This material is also based upon work supported by the National Science Foundation under CAREER award #0547434 and MRI grant #0521102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlos Vlachos.

Additional information

Associate Editor Scott I. Simon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charonko, J., Karri, S., Schmieg, J. et al. In Vitro Comparison of the Effect of Stent Configuration on Wall Shear Stress Using Time-resolved Particle Image Velocimetry. Ann Biomed Eng 38, 889–902 (2010). https://doi.org/10.1007/s10439-010-9915-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9915-7

Keywords

Navigation