Skip to main content
Log in

Breathing Resistance and Ultrafine Particle Deposition in Nasal–Laryngeal Airways of a Newborn, an Infant, a Child, and an Adult

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

As a human grows from birth to adulthood, both airway anatomy and breathing conditions vary, altering the deposition rate and pattern of inhaled aerosols. However, deposition studies have typically focused on adult subjects, results of which may not be readily extrapolated to children. This study numerically evaluated the age-related effects on the airflow and aerosol dynamics in image-based nose–throat models of a 10-day-old newborn, a 7-month-old infant, a 5-year-old child, and a 53-year-old adult. Differences in airway physiology, breathing resistance, and aerosol filtering efficiency among the four models were quantified and compared. A high-fidelity fluid-particle transport model was employed to simulate the multi-regime airflows and particle transport within the nasal–laryngeal airways. Ultrafine particles were evaluated under breathing conditions ranging from sedentary to heavy activities. Results of this study indicate that the nasal–laryngeal airways at different ages, albeit differ significantly in morphology and dimension, do not significantly affect the total deposition fractions or maximum local deposition enhancement for ultrafine aerosols. Further, the deposition partitioning in the sub-regions of interest is different among the four models. Results of this study corroborate the use of the in vivo-based diffusion parameter (D 0.5 Q −0.28) over the replica-based parameter in correlating nasal–laryngeal depositions of ultrafine aerosols. Improved correlations have been developed for the four age groups by implementing this in vivo-based diffusion parameter as well as the Cunningham correction factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Allen, M. D., and O. G. Raabe. Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus. Aerosol Sci. Technol. 4:269–286, 1985.

    Article  CAS  Google Scholar 

  2. Asgharian, B., M. G. Ménache, and F. J. Miller. Modeling age-related particle deposition in humans. J. Aerosol Med. 17(3):213–224, 2004.

    Article  PubMed  CAS  Google Scholar 

  3. Becquemin, M. H., D. L. Swift, A. Bouchikhi, M. Roy, and A. Teillac. Particle deposition and resistance in the noses of adults and children. Eur. Respir. J. 4(6):694–702, 1991.

    PubMed  CAS  Google Scholar 

  4. Bennett, W. D., and K. L. Zeman. Effect of race on fine particle deposition for oral and nasal breathing. Inhalation Toxicol. 17(12):641–648, 2005.

    Article  CAS  Google Scholar 

  5. Bennett, W. D., K. L. Zeman, and A. M. Jarabek. Nasal contribution to breathing and fine particle deposition in children versus adults. J. Toxicol. Environ. Health Part A 71(3):227–237, 2008.

    Article  PubMed  CAS  Google Scholar 

  6. Bobak, M., and D. A. Leon. The effect of air pollution on infant mortality appears specific for respiratory causes in the postneonatal period. Epidemiology 10(6):666–670, 1999.

    Article  PubMed  CAS  Google Scholar 

  7. Brancatisano, T., P. W. Collett, and L. A. Engel. Respiratory movements of the vocal cords. J. Appl. Physiol. 54(4):1269–1276, 1983.

    PubMed  CAS  Google Scholar 

  8. Bridger, G. P. Physiology of the nasal valve. Arch. Otolaryngol. Head Neck Surg. 92(6):543–553, 1970.

    Article  CAS  Google Scholar 

  9. Bridger, G. P., and D. F. Proctor. Maximum nasal inspiratory flow and nasal resistance. Ann. Otol. Rhinol. Laryngol. 79(3):481–488, 1970.

    PubMed  CAS  Google Scholar 

  10. Cheng, Y. S. Aerosol deposition in the extrathoracic region. Aerosol Sci. Technol. 37:659–671, 2003.

    Article  PubMed  CAS  Google Scholar 

  11. Cheng, K. H., Y. S. Cheng, H. C. Yeh, R. A. Guilmette, S. Q. Simpson, S. Q. Yang, and D. L. Swift. In vivo measurements of nasal airway dimensions and ultrafine aerosol depositing in human nasal and oral airways. J. Aerosol Sci. 27:785–801, 1996.

    Article  CAS  Google Scholar 

  12. Cheng, K. H., Y. S. Cheng, H. C. Yeh, and D. L. Swift. Deposition of ultrafine aerosols in the head airways during natural breathing and during simulated breath holding using replicate human upper airway casts. Aerosol Sci. Technol. 23(3):465–474, 1995.

    Article  CAS  Google Scholar 

  13. Cheng, Y. S., S. M. Smith, H. C. Yeh, D. B. Kim, K. H. Cheng, and D. L. Swift. Deposition of ultrafine aerosols and thoron progeny in peplicas of nasal airways of young children. Aerosol Sci. Technol. 23(4):541–552, 1995.

    Article  CAS  Google Scholar 

  14. Cheng, Y. S., Y. F. Su, H. C. Yeh, and D. L. Swift. Deposition of Thoron progeny in human head airways. Aerosol Sci. Technol. 18:359–375, 1993.

    Article  CAS  Google Scholar 

  15. Cheng, Y. S., Y. Yamada, H. C. Yeh, and D. L. Swift. Diffusional deposition of ultrafine aerosols in a human nasal cast. J. Aerosol Sci. 19:741, 1988.

    Article  Google Scholar 

  16. Cheng, Y. S., H. C. Yeh, R. A. Guilmette, S. Q. Simpson, K. H. Cheng, and D. L. Swift. Nasal deposition of ultrafine particles in human volunteers and its relationship to airway geometry. Aerosol Sci. Technol. 25(3):274–291, 1996.

    Article  CAS  Google Scholar 

  17. Cohen Hubal, E. A., J. S. Kimbell, and P. S. Fedkiw. Incorporation of nasal-lining mass-transfer resistance into a CFD model for prediction of ozone dosimetry in the upper respiratory tract. Inhalation Toxicol. 8(9):831–857, 1996.

    Article  CAS  Google Scholar 

  18. Crawford, D. J. Identifying critical human subpopulations by age groups: radioactivity and the lung. Phys. Med. Biol. 27:539–552, 1982.

    Article  PubMed  CAS  Google Scholar 

  19. Diot, P., L. B. Palmer, A. Smaldone, J. Decelie-Germana, R. Grimson, and G. C. Smaldone. RhDNase I aerosol deposition and related factors in cystic fibrosis. Am. J. Respir. Crit. Care Med. 156(5):1662–1668, 1997.

    PubMed  CAS  Google Scholar 

  20. Everard, M. L. Inhalation therapy for infants. Adv. Drug Deliv. Rev. 55(7):869–878, 2003.

    Article  PubMed  CAS  Google Scholar 

  21. Faustman, E. M., S. M. Silbernagel, R. A. Fenske, T. M. Burbacher, and R. A. Ponce. Mechanisms underlying children’s susceptibility to environmental toxicants. Environ. Health Perspect. 108:13–21, 2000.

    PubMed  CAS  Google Scholar 

  22. Fleming, S., M. Thompson, R. Stevens, C. Heneghan, A. Plüddemann, I. Maconochie, L. Tarassenko, and D. Mant. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lancet 377(9770):1011–1018, 2011.

    Article  PubMed  Google Scholar 

  23. Fodil, R., L. Brugel-Ribere, C. Croce, G. Sbirlea-Apiou, C. Larger, J. F. Papon, C. Delclaux, A. Coste, D. Isabey, and B. Louis. Inspiratory flow in the nose: a model coupling flow and vasoerectile tissue distensibility. J. Appl. Physiol. 98(1):288–295, 2005.

    Article  PubMed  Google Scholar 

  24. Gagliardi, L., F. Rusconi, M. Castagneto, G. L. N. Porta, S. Razon, and A. Pellegatta. Respiratory rate and body mass in the first three years of life. Arch. Dis. Child. 76(2):151–154, 1997.

    Article  PubMed  CAS  Google Scholar 

  25. Garcia, G. J. M., E. W. Tewksbury, B. A. Wong, and J. S. Kimbell. Interindividual variability in nasal filtration as a function of nasal cavity geometry. J. Aerosol Med. Pulm. Drug Deliv. 22(2):139–155, 2009.

    Article  PubMed  Google Scholar 

  26. Ghalati, P. F., E. Keshavarzian, O. Abouali, A. Faramarzi, J. Y. Tu, and A. Shakibafard. Numerical analysis of micro- and nano-particle deposition in a realistic human upper airway. Comput. Biol. Med. 42(1):39–49, 2012.

    Article  Google Scholar 

  27. Ginsberg, G., B. Foos, R. B. Dzubow, and M. Firestone. Options for incorporating children’s inhaled dose into human health risk assessment. Inhalation Toxicol. 22(8):627–647, 2010.

    Article  CAS  Google Scholar 

  28. Ginsberg, G. L., B. P. Foos, and M. P. Firestone. Review and analysis of inhalation dosimetry methods for application to children’s risk assessment. J. Toxicol. Environ. Health Part A 68(8):573–615, 2005.

    Article  PubMed  CAS  Google Scholar 

  29. Golshahi, L., W. H. Finlay, J. S. Olfert, R. B. Thompson, and M. L. Noga. Deposition of inhaled ultrafine aerosols in replicas of nasal airways of infants. Aerosol Sci. Technol. 44(9):741–752, 2010.

    Article  CAS  Google Scholar 

  30. Gradon, L., and C. P. Yu. Diffusional particle deposition in the human nose and mouth. Aerosol Sci. Technol. 11:213–220, 1989.

    Article  Google Scholar 

  31. Grgic, B., W. H. Finlay, P. K. P. Burnell, and A. F. Heenan. In vitro intersubject and intrasubject deposition measurements in realistic mouth-throat geometries. J. Aerosol Sci. 35(8):1025–1040, 2004.

    Article  CAS  Google Scholar 

  32. Guilmette, R. A., Y. S. Cheng, H. C. Yeh, and D. L. Swift. Deposition of 0.005–12 micrometer monodisperse particles in a computer-milled, MRI-based nasal airway replica. Inhalation Toxicology 6(Suppl. 1):395–399, 1994.

    Google Scholar 

  33. Haussermann, S., A. G. Bailey, M. R. Bailey, G. Etherington, and M. Youngman. The influence of breathing patterns on particle deposition in a nasal replicate cast. J. Aerosol Sci. 33(6):923–933, 2002.

    Article  CAS  Google Scholar 

  34. Inthavong, K., H. Wen, Z. F. Tian, and J. Y. Tu. Numerical study of fibre deposition in a human nasal cavity. J. Aerosol Sci. 39(3):253–265, 2008.

    Article  CAS  Google Scholar 

  35. Inthavong, K., K. Zhang, and J. Y. Tu. Numerical modelling of nanoparticle deposition in the nasal cavity and the tracheobronchial airway. Comput. Methods Biomech. Biomed. Eng. 14(7):633–643, 2011.

    Article  Google Scholar 

  36. Janssens, H. M., J. C. de Jongste, W. J. Fokkens, S. G. Robben, K. Wouters, and H. A. Tiddens. The Sophia Anatomical Infant Nose-Throat (Saint) model: a valuable tool to study aerosol deposition in infants. J. Aerosol Med. 14(4):433–441, 2001.

    Article  PubMed  CAS  Google Scholar 

  37. Kelly, J. T., B. Asgharian, J. S. Kimbell, and B. Wong. Particle deposition in human nasal airway replicas manufactured by different methods. Part I: inertial regime particles. Aerosol Sci. Technol. 38:1063–1071, 2004.

    Article  CAS  Google Scholar 

  38. Kelly, J. T., B. Asgharian, J. S. Kimbell, and B. Wong. Particle deposition in human nasal airway replicas manufactured by different methods. Part II: ultrafine particles. Aerosol Sci. Technol. 38:1072–1079, 2004.

    Article  CAS  Google Scholar 

  39. Kesavanathan, J., R. Bascom, and D. L. Swift. The effect of nasal passage characteristics on particle deposition. J. Aerosol Med. 11(1):27–39, 1998.

    Article  Google Scholar 

  40. Kimbell, J. S., J. H. Overton, R. P. Subramaniam, P. M. Schlosser, K. T. Morgan, R. B. Conolly, and F. J. Miller. Dosimetry modeling of inhaled formaldehyde: binning nasal flux predictions for quantitative risk assessment. Toxicol. Sci. 64(1):111–121, 2001.

    Article  PubMed  CAS  Google Scholar 

  41. Kundoor, V., and R. N. Dalby. Effect of formulation- and administration-related variables on deposition pattern of nasal spray pumps evaluated using a nasal cast. Pharm. Res. 28(8):1895–1904, 2011.

    Article  PubMed  CAS  Google Scholar 

  42. Liu, Y., E. A. Matida, J. Gu, and M. R. Johnson. Numerical simulation of aerosol deposition in a 3-D human nasal cavity using RANS, RANS/EIM, and LES. J. Aerosol Sci. 38:683–700, 2007.

    Article  CAS  Google Scholar 

  43. Longest, P. W., and J. Xi. Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways. Aerosol Sci. Technol. 41(4):380–397, 2007.

    Article  CAS  Google Scholar 

  44. Longest, P. W., and J. X. Xi. Condensational growth may contribute to the enhanced deposition of cigarette smoke particles in the upper respiratory tract. Aerosol Sci. Technol. 42(8):579–602, 2008.

    Article  CAS  Google Scholar 

  45. Martonen, T. B., and Z. Zhang. Deposition of sulfate acid aerosols in the developing human lung. Inhalation Toxicol. 5(1):165–187, 1993.

    Article  CAS  Google Scholar 

  46. Martonen, T. B., Z. Q. Zhang, G. Yue, and C. J. Musante. Fine particle deposition within human nasal airways. Inhalation Toxicol. 15(4):283–303, 2003.

    Article  CAS  Google Scholar 

  47. Matida, E. A., W. H. Finlay, and L. B. Grgic. Improved numerical simulation of aerosol deposition in an idealized mouth-throat. J. Aerosol Sci. 35:1–19, 2004.

    Article  CAS  Google Scholar 

  48. Moghadas, H., O. Abouali, A. Faramarzi, and G. Ahmadi. Numerical investigation of septal deviation effect on deposition of nano/microparticles in human nasal passage. Respir. Physiol. Neurobiol. 177(1):9–18, 2011.

    Article  PubMed  CAS  Google Scholar 

  49. Moller, W., G. K. Saba, K. Haussinger, S. Becker, M. Keller, and U. Schuschnig. Nasally inhaled pulsating aerosols: lung, sinus and nose deposition. Rhinology 49(3):286–291, 2011.

    PubMed  CAS  Google Scholar 

  50. Morgan, K. T., and T. M. Monticello. Airflow, gas deposition, and lesion distribution in the nasal passages. Environ. Health Perspect. 85:209–218, 1990.

    Article  PubMed  CAS  Google Scholar 

  51. Mortola, J. P. Breathing pattern in newborns. J. Appl. Physiol. 56(6):1533–1540, 1984.

    PubMed  CAS  Google Scholar 

  52. Nasr, H., G. Ahmadi, and J. B. McLaughlin. A DNS study of effects of particle–particle collisions and two-way coupling on particle deposition and phasic fluctuations. J. Fluid Mech. 640:507–536, 2009.

    Article  Google Scholar 

  53. Okuyama, K., Y. Kousaka, and K. Hayashi. Change in size distribution of ultrafine aerosol particles undergoing Brownian coagulation. J. Colloid Interface Sci. 101(1):98–109, 1984.

    Article  CAS  Google Scholar 

  54. Oldham, M. J., R. C. Mannix, and R. F. Phalen. Deposition of monodisperse particles in hollow models representing adult and child-size tracheobroncial airways. Health Phys. 72(6):827–833, 1997.

    Article  PubMed  CAS  Google Scholar 

  55. Persak, S. C., S. Sin, J. M. McDonough, R. Arens, and D. M. Wootton. Noninvasive estimation of pharyngeal airway resistance and compliance in children based on volume-gated dynamic MRI and computational fluid dynamics. J. Appl. Physiol. 111(6):1819–1827, 2011.

    Article  PubMed  Google Scholar 

  56. Phalen, R. F., R. G. Cuddihy, R. G. Fisher, O. R. Moss, R. B. Schlesinger, D. L. Swift, and H. C. Yeh. Main features of the proposed NCRP respiratory tract dosimetry model. Radiat. Prot. Dosimetry 38:179–184, 1991.

    CAS  Google Scholar 

  57. Phalen, R. F., M. J. Oldham, C. B. Beaucage, T. T. Crocker, and J. D. Mortensen. Postnatal enlargement of human tracheobronchial airways and implications for particle deposition. Anat. Rec. 212:368–380, 1985.

    Article  PubMed  CAS  Google Scholar 

  58. Pickering, D. N., and C. S. Beardsmore. Nasal flow limitation in children. Pediatr. Pulmonol. 27(1):32–36, 1999.

    Article  PubMed  CAS  Google Scholar 

  59. Rasmussen, T. R., A. Andersen, and O. F. Pedersen. Particle deposition in the nose related to nasal cavity geometry. Rhinology 38(3):102–107, 2000.

    PubMed  CAS  Google Scholar 

  60. Rusconi, F., M. Castagneto, N. Porta, L. Gagliardi, G. Leo, A. Pellegatta, S. Razon, and M. Braga. Reference values for respiratory rate in the first 3 years of life. Pediatrics 94(3):350–355, 1994.

    PubMed  CAS  Google Scholar 

  61. Scherer, P. W., K. Keyhani, and M. M. Mozell. Nasal dosimetry modeling for humans. Inhalation Toxicol. 6:85–97, 1994.

    Google Scholar 

  62. Schroeter, J. D., G. J. M. Garcia, and J. S. Kimbell. Effects of surface smoothness on inertial particle deposition in human nasal models. J. Aerosol Sci. 42(1):52–63, 2011.

    Article  PubMed  CAS  Google Scholar 

  63. Schroeter, J. D., C. J. Musante, D. M. Hwang, R. Burton, R. Guilmette, and T. B. Martonen. Hygroscopic growth and deposition of inhaled secondary cigarette smoke in human nasal pathways. Aerosol Sci. Technol. 34(1):137–143, 2001.

    CAS  Google Scholar 

  64. Shi, H., C. Kleinstreuer, and Z. Zhang. Laminar airflow and nanoparticle or vapor deposition in a human nasal cavity model. J. Biomech. Eng. 128:697–706, 2006.

    Article  PubMed  CAS  Google Scholar 

  65. Shi, H., C. Kleinstreuer, and Z. Zhang. Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness. J. Aerosol Sci. 38:398–419, 2007.

    Article  CAS  Google Scholar 

  66. Storey-Bishoff, J., M. Noga, and W. H. Finlay. Deposition of micrometer-sized aerosol particles in infant nasal airway replicas. J. Aerosol Sci. 39(12):1055–1065, 2008.

    Article  CAS  Google Scholar 

  67. Subramaniam, R. P., R. B. Richardson, K. T. Morgan, J. S. Kimbell, and R. A. Guilmette. Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhalation Toxicol. 10(2):91–120, 1998.

    Article  CAS  Google Scholar 

  68. Swift, D. L., N. Montassier, P. K. Hopke, K. Karpenhayes, Y. S. Cheng, Y. F. Su, H. C. Yeh, and J. C. Strong. Inspiratory deposition of ultrafine particles in human nasal replicate cast. J. Aerosol Sci. 23(1):65–72, 1992.

    Article  CAS  Google Scholar 

  69. Swift, D. L., and J. C. Strong. Nasal deposition of ultrafine 218Po aerosols in human subjects. J. Aerosol Sci. 27(7):1125–1132, 1996.

    Article  Google Scholar 

  70. Tian, L., G. Ahmadi, Z. C. Wang, and P. K. Hopke. Transport and deposition of ellipsoidal fibers in low Reynolds number flows. J. Aerosol Sci. 45:1–18, 2012.

    Article  Google Scholar 

  71. Wang, S. M., K. Inthavong, J. Wen, J. Y. Tu, and C. L. Xue. Comparison of micron- and nanoparticle deposition patterns in a realistic human nasal cavity. Respir. Physiol. Neurobiol. 166(3):142–151, 2009.

    Article  PubMed  CAS  Google Scholar 

  72. Wheatley, J. R., T. C. Amis, and L. A. Engel. Nasal and oral airway pressure-flow relationships. J. Appl. Physiol. 71(6):2317–2324, 1991.

    PubMed  CAS  Google Scholar 

  73. Xi, J., and P. W. Longest. Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway. Ann. Biomed. Eng. 35(4):560–581, 2007.

    Article  PubMed  Google Scholar 

  74. Xi, J., and P. W. Longest. Numerical predictions of submicrometer aerosol deposition in the nasal cavity using a novel drift flux approach. Int. J. Heat Mass Transf. 51(23–24):5562–5577, 2008.

    Article  Google Scholar 

  75. Xi, J., and P. W. Longest. Characterization of submicrometer aerosol deposition in extrathoracic airways during nasal exhalation. Aerosol Sci. Technol. 43(8):808–827, 2009.

    Article  CAS  Google Scholar 

  76. Xi, J., P. W. Longest, and T. B. Martonen. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J. Appl. Physiol. 104(6):1761–1777, 2008.

    Article  PubMed  Google Scholar 

  77. Xi, J., X. Si, J. W. Kim, and A. Berlinski. Simulation of airflow and aerosol deposition in the nasal cavity of a 5-year-old child. J. Aerosol Sci. 42(3):156–173, 2011.

    Article  CAS  Google Scholar 

  78. Yamada, Y., Y. S. Cheng, H. C. Yeh, and D. L. Swift. Inspiratory and expiratory deposition of ultrafine particles in a human nasal cast. Inhalation Toxicol. 1:1–11, 1988.

    Google Scholar 

  79. Yu, G., Z. Zhang, and R. Lessmann. Fluid flow and particle diffusion in the human upper respiratory system. Aerosol Sci. Technol. 28:146, 1998.

    Article  CAS  Google Scholar 

  80. Zamankhan, P., G. Ahmadi, Z. Wang, P. K. Hopke, Y. S. Cheng, W. C. Su, and D. Leonard. Airflow and deposition of nano-particles in a human nasal cavity. Aerosol Sci. Technol. 40:463–476, 2006.

    Article  CAS  Google Scholar 

  81. Zhang, Z., and C. Kleinstreuer. Computational analysis of airflow and nanoparticle deposition in a combined nasal-oral-tracheobronchial airway model. J. Aerosol Sci. 42(3):174–194, 2011.

    Article  Google Scholar 

  82. Zhao, K., P. W. Scherer, S. A. Hajiloo, and P. Dalton. Effects of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction. Chem. Senses 29(5):365–379, 2004.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiang Xi.

Additional information

Associate Editor Kenneth R. Lutchen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xi, J., Berlinski, A., Zhou, Y. et al. Breathing Resistance and Ultrafine Particle Deposition in Nasal–Laryngeal Airways of a Newborn, an Infant, a Child, and an Adult. Ann Biomed Eng 40, 2579–2595 (2012). https://doi.org/10.1007/s10439-012-0603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0603-7

Keywords

Navigation