Skip to main content
Log in

Evaluation of a Multiscale Modelling Methodology to Predict the Mechanical Properties of PCL/β-TCP Sintered Scaffold Materials

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A multiscale modelling methodology to predict the macroscale stiffness of selective laser sintered polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP) materials is evaluated. The relationship between a micromechanics-evaluated composite material elastic modulus (E eff) and segment grey-value (GVave) is established for a 90/10 wt% PCL/β-TCP material and compared to the previously established E eff vs. GVave relationship for a 50/50 wt% PCL/β-TCP material. The increase in E eff with GVave was found to be greater for the 90/10 wt% material than for the 50/50 wt% material. Differences in the material microstructures are visible with greater local conglomerations of β-TCP in the 90/10 wt% material compared to the 50/50 wt% material. These results indicate that the relationship between E eff and GVave is material-specific and that one definition cannot be used to describe both materials. We have used the E eff and GVave relationship specific to the 90/10 wt% material to assign element-specific elastic properties in a high resolution macroscale strut finite element model to successfully predict the experimentally-evaluated strut effective stiffness of the 90/10 wt%. These results combined indicate that this multiscale modelling methodology reasonably predicts the effective elastic modulus of selective laser sintering struts with different material configurations, and that it can be used to determine the material-specific definition of the relationship between E eff and GVave for a particular material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Baron, C., M. Talmant, and P. Laugier. Effect of porosity on effective diagonal stiffness coefficients (cii) and elastic anisotropy of cortical bone at 1 MHz: a finite-difference time domain study. J. Acoust. Soc. Am. 122:1810, 2007.

    Article  PubMed  Google Scholar 

  2. Böhm, H. J. A short introduction to continuum micromechanics. In: Mechanics of Microstructured Materials, edited by H. J. Bohm. Vienna: CISM Courses and Lectures, Springer, 2004, pp. 1–40.

    Chapter  Google Scholar 

  3. Borbély, A., P. Kenesei, and H. Biermann. Estimation of the effective properties of particle-reinforced metal–matrix composites from microtomographic reconstructions. Acta Mater. 54:2735–2744, 2006.

    Article  Google Scholar 

  4. Bower, A. F. Applied Mechanics of Solids, 2008. http://solidmechanics.org/text/Chapter3_2/Chapter3_2.htm.

  5. Cahill, S., S. Lohfeld, and P. E. McHugh. Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering. J. Mater. Sci. Mater. Med. 20:1255–1262, 2009.

    Article  CAS  PubMed  Google Scholar 

  6. Charles-Harris, M., S. del Valle, E. Hentges, P. Bleuet, D. Lacroix, and J. A. Planell. Mechanical and structural characterisation of completely degradable polylactic acid/calcium phosphate glass scaffolds. Biomaterials 28:4429–4438, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Chawla, N., R. S. Sidhu, and V. V. Ganesh. Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites. Acta Mater. 54:1541–1548, 2006.

    Article  CAS  Google Scholar 

  8. Das, S. Selective laser sintering of polymers and polymer-ceramic composites. In: Virtual Prototyping & Bio Manufacturing in Medical Applications, 2008, pp. 226–260. doi:10.1007/978-0-387-68831-2_11.

  9. Dong, J., T. Uemura, Y. Shirasaki, and T. Tateishi. Promotion of bone formation using highly pure porous beta-TCP combined with bone marrow-derived osteoprogenitor cells. Biomaterials 23:4493–4502, 2002.

    Article  CAS  PubMed  Google Scholar 

  10. Doyle, H., S. Lohfeld, and P. McHugh. Predicting the elastic properties of selective laser sintered PCL/β-TCP bone scaffold materials using computational modelling. Ann. Biomed. Eng. 42:661–677, 2013.

    Article  PubMed  Google Scholar 

  11. Eosoly, S., D. Brabazon, S. Lohfeld, and L. Looney. Selective laser sintering of hydroxyapatite/poly-epsilon-caprolactone scaffolds. Acta Biomater. 6:2511–2517, 2010.

    Article  CAS  PubMed  Google Scholar 

  12. Eosoly, S., N. E. Vrana, S. Lohfeld, M. Hindie, and L. Looney. Interaction of cell culture with composition effects on the mechanical properties of polycaprolactone-hydroxyapatite scaffolds fabricated via selective laser sintering (SLS). Mater. Sci. Eng. C 32:2250–2257, 2012.

    Article  CAS  Google Scholar 

  13. Eshraghi, S., and S. Das. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 6:2467–2476, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Franco, A., M. Lanzetta, and L. Romoli. Experimental analysis of selective laser sintering of polyamide powders: an energy perspective. J. Clean. Prod. 18:1722–1730, 2010.

    Article  CAS  Google Scholar 

  15. Gassan, J., A. Chate, and A. K. Bledzki. Calculation of elastic properties of natural fibers. J. Mater. Sci. 6:3715–3720, 2001.

    Article  Google Scholar 

  16. Goodridge, R. D., C. J. Tuck, and R. J. M. Hague. Laser sintering of polyamides and other polymers. Prog. Mater Sci. 57:229–267, 2012.

    Article  CAS  Google Scholar 

  17. Hazanov, S. Hill condition and overall properties of composites. Arch. Appl. Mech. 68:385–394, 1998.

    Article  Google Scholar 

  18. Kang, Y., A. Scully, D. A. Young, S. Kim, H. Tsao, M. Sen, and Y. Yang. Enhanced mechanical performance and biological evaluation of a PLGA coated β-TCP composite scaffold for load-bearing applications. Eur. Polym. J. 47:1569–1577, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kanit, T., F. N’Guyen, S. Forest, D. Jeulin, M. Reed, and S. Singleton. Apparent and effective physical properties of heterogeneous materials: representativity of samples of two materials from food industry. Comput. Methods Appl. Mech. Eng. 195:3960–3982, 2006.

    Article  Google Scholar 

  20. Liu, G., L. Zhao, L. Cui, W. Liu, and Y. Cao. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate. Biomed. Mater. 2:78–86, 2007.

    Article  CAS  PubMed  Google Scholar 

  21. Lohfeld, S., S. Cahill, V. Barron, P. McHugh, L. Dürselen, L. Kreja, C. Bausewein, and A. Ignatius. Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds. Acta Biomater. 8:3446–3456, 2012.

    Article  CAS  PubMed  Google Scholar 

  22. Lohfeld, S., M. A. Tyndyk, S. Cahill, N. Flaherty, V. Barron, and P. E. McHugh. A method to fabricate small features on scaffolds for tissue engineering via selective laser sintering. J. Biomed. Sci. Eng. 03:138–147, 2010.

    Article  Google Scholar 

  23. Lu, Z., and H. Zreiqat. Beta-tricalcium phosphate exerts osteoconductivity through alpha2beta1 integrin and down-stream MAPK/ERK signaling pathway. Biochem. Biophys. Res. Commun. 394:323–329, 2010.

    Article  CAS  PubMed  Google Scholar 

  24. Milan, J.-L., J. A. Planell, and D. Lacroix. Simulation of bone tissue formation within a porous scaffold under dynamic compression. Biomech. Model. Mechanobiol. 9:583–596, 2010.

    Article  PubMed  Google Scholar 

  25. Nakamoto, T., N. Shirakawa, Y. Miyata, and H. Inui. Selective laser sintering of high carbon steel powders studied as a function of carbon content. J. Mater. Process. Technol. 209:5653–5660, 2009.

    Article  CAS  Google Scholar 

  26. Nemat-Nasser, S., and M. Hori. Micromechanics: Overall Properties of Heterogeneous Materials. Amsterdam: North Holland, 1993.

    Google Scholar 

  27. Ni, Y., and M. Y. M. Chiang. Prediction of elastic properties of heterogeneous materials with complex microstructures. J. Mech. Phys. Solids 55:517–532, 2007.

    Article  CAS  Google Scholar 

  28. Partee, B., S. J. Hollister, and S. Das. Selective laser sintering process optimization for layered manufacturing of CAPA® 6501 polycaprolactone bone tissue engineering scaffolds. J. Manuf. Sci. Eng. 128:531, 2006.

    Article  Google Scholar 

  29. Rai, B., J. L. Lin, Z. X. H. Lim, R. E. Guldberg, D. W. Hutmacher, and S. M. Cool. Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds. Biomaterials 31:7960–7970, 2010.

    Article  CAS  PubMed  Google Scholar 

  30. Roosa, S. M. M., J. M. Kemppainen, E. N. Moffitt, P. H. Krebsbach, and S. J. Hollister. The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J. Biomed. Mater. Res. A 92:359–368, 2010.

    Article  PubMed  Google Scholar 

  31. Saey, H., and D. W. Hutmacher. Application of micro CT and computation modeling in bone tissue engineering. Comput. Des. 37:1151–1161, 2005.

    Google Scholar 

  32. Sandino, C., and D. Lacroix. A dynamical study of the mechanical stimuli and tissue differentiation within a CaP scaffold based on micro-CT finite element models. Biomech. Model. Mechanobiol. 10:565–576, 2011.

    Article  PubMed  Google Scholar 

  33. Scheiner, S., R. Sinibaldi, B. Pichler, V. Komlev, C. Renghini, C. Vitale-Brovarone, F. Rustichelli, and C. Hellmich. Micromechanics of bone tissue-engineering scaffolds, based on resolution error-cleared computer tomography. Biomaterials 30:2411–2419, 2009.

    Article  CAS  PubMed  Google Scholar 

  34. Sone, H., and M. D. Zoback. Mechanical properties of shale-gas reservoir rocks—part 1: static and dynamic elastic properties and anisotropy. Geophysics 78:D381–D392, 2013.

    Article  Google Scholar 

  35. Tan, K. H., C. K. Chua, K. F. Leong, C. M. Cheah, P. Cheang, M. S. Abu Bakar, and S. W. Cha. Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 24:3115–3123, 2003.

    Article  CAS  PubMed  Google Scholar 

  36. Tolochko, N. K., M. K. Arshinov, A. V. Gusarov, V. I. Titov, T. Laoui, and L. Froyen. Mechanisms of selective laser sintering and heat transfer in Ti powder. Rapid Prototyp. J. 9:314–326, 2003.

    Article  Google Scholar 

  37. Van Cleynenbreugel, T., J. Schrooten, H. Van Oosterwyck, and J. Vander Sloten. Micro-CT-based screening of biomechanical and structural properties of bone tissue engineering scaffolds. Med. Biol. Eng. Comput. 44:517–525, 2006.

    Article  PubMed  Google Scholar 

  38. Vitor, G., C. Henrique, and P. Klauss. Rapid manufacturing of polyethylene parts with controlled pore size gradients using selective laser sintering. Mater. Res. 10:211–214, 2007.

    Article  Google Scholar 

  39. Wang, C., X. Zhou, and M. Wang. Influence of sintering temperatures on hardness and Young’s modulus of tricalcium phosphate bioceramic by nanoindentation technique. Mater. Charact. 52:301–307, 2004.

    Article  CAS  Google Scholar 

  40. Williams, J. M., A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, and S. Das. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817–4827, 2005.

    Article  CAS  PubMed  Google Scholar 

  41. Wongwitwichot, P., J. Kaewsrichan, K. H. Chua, and B. H. I. Ruszymah. Comparison of TCP and TCP/HA hybrid scaffolds for osteoconductive activity. Open Biomed. Eng. J. 4:279–285, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yeong, W. Y., N. Sudarmadji, H. Y. Yu, C. K. Chua, K. F. Leong, S. S. Venkatraman, Y. C. F. Boey, and L. P. Tan. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 6:2028–2034, 2010.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Y., L. Hao, M. M. Savalani, R. A. Harris, and K. E. Tanner. Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite-filled polymeric composites. J. Biomed. Mater. Res. A 86:607–616, 2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

H. Doyle acknowledges funding from the Irish Research Council under the Embark Initiative Postgraduate Research Scholarship Scheme. The authors would like to acknowledge the SFI/HEA funded Irish Centre for High End Computing for the provision of computational resources and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather Doyle.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doyle, H., Lohfeld, S., McDonnell, P. et al. Evaluation of a Multiscale Modelling Methodology to Predict the Mechanical Properties of PCL/β-TCP Sintered Scaffold Materials. Ann Biomed Eng 43, 1989–1998 (2015). https://doi.org/10.1007/s10439-014-1199-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1199-x

Keywords

Navigation