Skip to main content
Log in

Estimation of Inlet Flow Rates for Image-Based Aneurysm CFD Models: Where and How to Begin?

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Patient-specific flow rates are rarely available for image-based computational fluid dynamics models. Instead, flow rates are often assumed to scale according to the diameters of the arteries of interest. Our goal was to determine how choice of inlet location and scaling law affect such model-based estimation of inflow rates. We focused on 37 internal carotid artery (ICA) aneurysm cases from the Aneurisk cohort. An average ICA flow rate of 245 mL min−1 was assumed from the literature, and then rescaled for each case according to its inlet diameter squared (assuming a fixed velocity) or cubed (assuming a fixed wall shear stress). Scaling was based on diameters measured at various consistent anatomical locations along the models. Choice of location introduced a modest 17% average uncertainty in model-based flow rate, but within individual cases estimated flow rates could vary by >100 mL min−1. A square law was found to be more consistent with physiological flow rates than a cube law. Although impact of parent artery truncation on downstream flow patterns is well studied, our study highlights a more insidious and potentially equal impact of truncation site and scaling law on the uncertainty of assumed inlet flow rates and thus, potentially, downstream flow patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Baharoglu, M. I., A. Lauric, C. Wu, J. Hippelheuser, and A. M. Malek. Deviation from optimal vascular caliber control at middle cerebral artery bifurcations harboring aneurysms. J. Biomech. 47:3318–3324, 2014.

    Article  PubMed  Google Scholar 

  2. Bouthillier, A., H. R. van Loveren, and J. T. Keller. Segments of the internal carotid artery: a new classification. Neurosurgery 38:425–432, 1996; (discussion 432–433, 1996).

    CAS  PubMed  Google Scholar 

  3. Bowker, T. J., P. N. Watton, P. E. Summers, J. V. Byrne, and Y. Ventikos. Rest versus exercise hemodynamics for middle cerebral artery aneurysms: a computational study. AJNR Am. J. Neuroradiol. 31:317–323, 2010.

    Article  CAS  PubMed  Google Scholar 

  4. Castro, M. A., C. M. Putman, and J. R. Cebral. Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. AJNR Am. J. Neuroradiol. 27:1703–1709, 2006.

    CAS  PubMed  Google Scholar 

  5. Cebral, J. R., M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan, and A. F. Frangi. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. Med. Imaging 24:457–467, 2005.

    Article  PubMed  Google Scholar 

  6. Cebral, J. R., M. A. Castro, C. M. Putman, and N. Alperin. Flow-area relationship in internal carotid and vertebral arteries. Physiol. Meas. 29:585–594, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Cebral, J. R., F. Mut, J. Weir, and C. M. Putman. Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am. J. Neuroradiol. 32:264–270, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Cheng, C., F. Helderman, D. Tempel, D. Segers, B. Hierck, R. Poelmann, A. van Tol, D. J. Duncker, D. Robbers-Visser, N. T. C. Ursem, R. van Haperen, J. J. Wentzel, F. Gijsen, A. F. W. van der Steen, R. de Crom, and R. Krams. Large variations in absolute wall shear stress levels within one species and between species. Atherosclerosis. 195:225–235, 2007.

    Article  CAS  PubMed  Google Scholar 

  9. Fahrig, R., H. Nikolov, A. J. Fox, and D. W. Holdsworth. A three-dimensional cerebrovascular flow phantom. Med. Phys. 26:1589–1599, 1999.

    Article  CAS  PubMed  Google Scholar 

  10. Hodis, S., S. Kargar, D. F. Kallmes, and D. Dragomir-Daescu. Artery length sensitivity in patient-specific cerebral aneurysm simulations. AJNR Am. J. Neuroradiol. 2014. doi:10.3174/ajnr.A4179.

  11. Hoi, Y., B. A. Wasserman, E. G. Lakatta, and D. A. Steinman. Carotid bifurcation hemodynamics in older adults: effect of measured versus assumed flow waveform. J. Biomech. Eng. 132:071006, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Hoi, Y., B. A. Wasserman, E. G. Lakatta, and D. A. Steinman. Effect of common carotid artery inlet length on normal carotid bifurcation hemodynamics. J. Biomech. Eng. 132:121008, 2010.

    Article  PubMed  Google Scholar 

  13. Hoi, Y., B. A. Wasserman, Y. J. Xie, S. S. Najjar, L. Ferruci, E. G. Lakatta, G. Gerstenblith, and D. A. Steinman. Characterization of volumetric flow rate waveforms at the carotid bifurcations of older adults. Physiol. Meas. 31:291–302, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ingebrigtsen, T., M. K. Morgan, K. Faulder, L. Ingebrigtsen, T. Sparr, and H. Schirmer. Bifurcation geometry and the presence of cerebral artery aneurysms. J. Neurosurg. 101:108–113, 2004.

    Article  PubMed  Google Scholar 

  15. Jansen, I. G., J. J. Schneiders, W. V. Potters, P. van Ooij, R. van den Berg, E. van Bavel, H. A. Marquering, and C. B. Majoie. Generalized versus patient-specific inflow boundary conditions in computational fluid dynamics simulations of cerebral aneurysmal hemodynamics. AJNR Am. J. Neuroradiol. 35:1543–1548, 2014.

    Article  CAS  PubMed  Google Scholar 

  16. Jou, L. D., D. H. Lee, H. Morsi, and M. E. Mawad. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am. J. Neuroradiol. 29:1761–1767, 2008.

    Article  PubMed  Google Scholar 

  17. Karmonik, C., C. Yen, O. Diaz, R. Klucznik, R. G. Grossman, and G. Benndorf. Temporal variations of wall shear stress parameters in intracranial aneurysms–importance of patient-specific inflow waveforms for CFD calculations. Acta Neurochir. 152:1391–1398, 2010; (discussion 1398, 2010).

    Article  PubMed  Google Scholar 

  18. Langille, B. L., and F. O’Donnell. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231:405–407, 1986.

    Article  CAS  PubMed  Google Scholar 

  19. Lee, S. W., L. Antiga, J. D. Spence, and D. A. Steinman. Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke 39:2341–2347, 2008.

    Article  PubMed  Google Scholar 

  20. Marzo, A., P. Singh, I. Larrabide, A. Radaelli, S. Coley, M. Gwilliam, I. D. Wilkinson, P. Lawford, P. Reymond, U. Patel, A. Frangi, and D. R. Hose. Computational hemodynamics in cerebral aneurysms: the effects of modeled versus measured boundary conditions. Ann. Biomed. Eng. 39:884–896, 2011.

    Article  PubMed  Google Scholar 

  21. Marzo, A., P. Singh, P. Reymond, N. Stergiopulos, U. Patel, and R. Hose. Influence of inlet boundary conditions on the local haemodynamics of intracranial aneurysms. Comput. Methods Biomech. Biomed. Eng. 12:431–444, 2009.

    Article  Google Scholar 

  22. Meckel, S., L. Leitner, L. H. Bonati, F. Santini, T. Schubert, A. F. Stalder, P. Lyrer, M. Markl, and S. G. Wetzel. Intracranial artery velocity measurement using 4D PC MRI at 3 T: comparison with transcranial ultrasound techniques and 2D PC MRI. Neuroradiology 55:389–398, 2013.

    Article  PubMed  Google Scholar 

  23. Mocco, J., J. Huston, K. M. Fargen, J. Torner, and R. D. Brown, Jr. An angiographic atlas of intracranial arterial diameters associated with cerebral aneurysms. J. Neurointerv. Surg. 6:533–535, 2014.

    Article  PubMed  Google Scholar 

  24. Morbiducci, U., R. Ponzini, D. Gallo, C. Bignardi, and G. Rizzo. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta. J. Biomech. 46:102–109, 2013.

    Article  PubMed  Google Scholar 

  25. Murray, C. D. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. USA 12:207–214, 1926.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Mynard, J. P., and D. A. Steinman. Effect of velocity profile skewing on blood velocity and volume flow waveforms derived from maximum Doppler spectral velocity. Ultrasound Med. Biol. 39:870–881, 2013.

    Article  PubMed  Google Scholar 

  27. Pereira, V. M., O. Brina, and A. Marcos. Gonzales, A. P. Narata, P. Bijlenga, K. Schaller, K. O. Lovblad, and R. Ouared. Evaluation of the influence of inlet boundary conditions on computational fluid dynamics for intracranial aneurysms: a virtual experiment. J. Biomech. 46:1531–1539, 2013.

    Article  CAS  PubMed  Google Scholar 

  28. Piccinelli, M., S. Bacigaluppi, E. Boccardi, B. Ene-Iordache, A. Remuzzi, A. Veneziani, and L. Antiga. Geometry of the internal carotid artery and recurrent patterns in location, orientation, and rupture status of lateral aneurysms: an image-based computational study. Neurosurgery. 68:1270–1285, 2011; (discussion 1285, 2011).

    PubMed  Google Scholar 

  29. Piccinelli, M., D. A. Steinman, Y. Hoi, F. Tong, A. Veneziani, and L. Antiga. Automatic neck plane detection and 3D geometric characterization of aneurysmal sacs. Ann. Biomed. Eng. 40:2188–2211, 2012.

    Article  PubMed  Google Scholar 

  30. Qian, Y., H. Takao, M. Umezu, and Y. Murayama. Risk analysis of unruptured aneurysms using computational fluid dynamics technology: preliminary results. AJNR Am. J. Neuroradiol. 32:1948–1955, 2011.

    Article  CAS  PubMed  Google Scholar 

  31. Sangalli, L. M., P. Secchi, S. Vantini, and A. Veneziani. A case study in exploratory functional data analysis: geometrical features of the internal carotid artery. J. Am. Stat. Assoc. 104:37–48, 2009.

    Article  CAS  Google Scholar 

  32. Stroev, P. V., P. R. Hoskins, and W. J. Easson. Distribution of wall shear rate throughout the arterial tree: a case study. Atherosclerosis. 191:276–280, 2007.

    Article  CAS  PubMed  Google Scholar 

  33. Taylor, C. A., and D. A. Steinman. Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions. Ann. Biomed. Eng. 38:1188–1203, 2010.

    Article  PubMed  Google Scholar 

  34. Tremmel, M., S. Dhar, E. I. Levy, J. Mocco, and H. Meng. Influence of intracranial aneurysm-to-parent vessel size ratio on hemodynamics and implication for rupture: results from a virtual experimental study. Neurosurgery. 64:622–630, 2009; (discussion 630-631, 2009).

    Article  PubMed Central  PubMed  Google Scholar 

  35. Valen-Sendstad, K., M. Piccinelli, and D. A. Steinman. High-resolution computational fluid dynamics detects flow instabilities in the carotid siphon: implications for aneurysm initiation and rupture? J. Biomech. 47:3210–3216, 2014.

    Article  PubMed  Google Scholar 

  36. Valen-Sendstad, K., and D. A. Steinman. Mind the gap: impact of computational fluid dynamics solution strategy on prediction of intracranial aneurysm hemodynamics and rupture status indicators. AJNR Am. J. Neuroradiol. 35:536–543, 2014.

    Article  CAS  PubMed  Google Scholar 

  37. Wake, A. K., J. N. Oshinski, A. R. Tannenbaum, and D. P. Giddens. Choice of in vivo versus idealized velocity boundary conditions influences physiologically relevant flow patterns in a subject-specific simulation of flow in the human carotid bifurcation. J. Biomech. Eng. 131:021013, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Weinberg, P., and C. R. Ethier. Twenty-fold difference in hemodynamic wall shear stress between murine and human aortas. J. Biomech. 40:1594–1598, 2007.

    Article  PubMed  Google Scholar 

  39. Xiang, J., S. K. Natarajan, M. Tremmel, D. Ma, J. Mocco, L. N. Hopkins, A. H. Siddiqui, E. I. Levy, and H. Meng. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42:144–152, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Xiang, J., A. H. Siddiqui, and H. Meng. The effect of inlet wavefoms on computational hemodynamics of patient-specific intracranial aneurysms. J. Biomech. 47:3882–3890, 2014.

    Article  CAS  PubMed  Google Scholar 

  41. Zamir, M., P. Sinclair, and T. H. Wonnacott. Relation between diameter and flow in major branches of the arch of the aorta. J. Biomech. 25:1303–1310, 1992.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grant from the Heart & Stroke Foundation of Canada. DAS also acknowledges salary support of a Heart & Stroke Foundation Mid-Career Investigator award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David. A. Steinman.

Additional information

Associate Editor Diego Gallo oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valen-Sendstad, K., Piccinelli, M., KrishnankuttyRema, R. et al. Estimation of Inlet Flow Rates for Image-Based Aneurysm CFD Models: Where and How to Begin?. Ann Biomed Eng 43, 1422–1431 (2015). https://doi.org/10.1007/s10439-015-1288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1288-5

Keywords

Navigation