Skip to main content

Advertisement

Log in

Fatigue of Metallic Stents: From Clinical Evidence to Computational Analysis

  • Medical Stents: State of the Art and Future Directions
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The great success of stents in treating cardiovascular disease is actually undermined by their long-term fatigue failure. The high variability of stent failure incidence suggests that it is due to several correlated aspects, such as loading conditions, material properties, component design, surgical procedure, and patient functional anatomy. Numerical and experimental non-clinical assessments are included in the recommendations and requirements of several regulatory bodies and they are thus exploited in the analysis of stent fatigue performance. Optimization-based simulation methodologies have been developed as well, to improve the fatigue endurance of novel designs. This paper presents a review on the fatigue issue in metallic stents, starting from a description of clinical evidence about stent fracture up to the analysis of computational approaches available from the literature. The reported discussion on both the experimental and numerical framework aims at providing a general insight into stent lifetime prediction as well as at understanding the factors which affect stent fatigue performance for the design of novel components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. http://www.ncbi.nlm.nih.gov/pubmed.

References

  1. Adlakha, S., M. Sheikh, J. Wu, M. W. Burket, U. Pandya, W. Colyer, E. Eltahawy, and C. J. Cooper. Stent fracture in the coronary and peripheral arteries. J. Interv. Cardiol. 23(4):411–419, 2010.

    Article  PubMed  Google Scholar 

  2. Aghel, A., E. J. Armstrong. Recent advances in self-expanding stents for use in the superficial femoral and popliteal arteries. Expert Rev. Cardiovasc. Ther. 12(7):833–842, 2014.

    Article  CAS  PubMed  Google Scholar 

  3. AL-Mangour, B., R. Mongrain, and S. Yue. Coronary stents fracture: an engineering approach (review). Mater. Sci. Appl. 4(10):606–621, 2013.

    CAS  Google Scholar 

  4. Amiable, S., S. Chapuliot, A. Constantinescu, and A. Fissolo. A comparison of lifetime prediction methods for a thermal fatigue experiment. Int. J. Fatigue 28(7):692–706, 2006.

    Article  Google Scholar 

  5. Auricchio, F., A. Constantinescu, M. Conti, and G. Scalet. A computational approach for the lifetime prediction of cardiovascular balloon-expandable stents. Int. J. Fatigue 75:69–79, 2015.

    Article  CAS  Google Scholar 

  6. Auricchio, F., A. Constantinescu, C. Menna, and G. Scalet. A shakedown analysis of high cycle fatigue of shape memory alloys. 2015 (submitted).

  7. Auricchio, F., A. Constantinescu, and G. Scalet. Fatigue of 316L stainless steel notched μm-size components. Int. J. Fatigue, 68:231–247, 2014.

    Article  CAS  Google Scholar 

  8. Auricchio, F., L. Petrini. A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int. J. Numer. Methods Eng. 6:807–836, 2004.

    Article  Google Scholar 

  9. Auricchio, F., R. L. Taylor, and J. Lubliner. Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Comput. Methods Appl. Mech. Eng. 146:281–312, 1997.

    Article  Google Scholar 

  10. Azaouzi, M., A. Makradi, and S. Belouettar. Fatigue life prediction of cardiovascular stent using finite element method. Comput. Methods Biomech. Biomed. Eng. 15(S1):93–95, 2012.

    Article  Google Scholar 

  11. Azaouzi, M., A. Makradi, and S. Belouettar. Deployment of a self-expanding stent inside an artery: a finite element analysis. Mater. Des. 41:410–420, 2012.

    Article  CAS  Google Scholar 

  12. Azaouzi, M., A. Makradi, J. Petit, S. Belouettar, and O. Polit. On the numerical investigation of cardiovascular balloon-expandable stent using finite element method. Comput. Mater. Sci. 79:326–335, 2013.

    Article  CAS  Google Scholar 

  13. Barrera, O., Makradi. A., M. Abbadi, M. Azaouzi, and S. Belouettar. On high-cycle fatigue of 316L stents. Comput. Methods Biomech. Biomed. Eng. 2014, 17(3):239-250

    Article  Google Scholar 

  14. Bertolino, G., A. Constantinescu, M. Ferjani, and P. Treiber. A multiscale approach of fatigue and shakedown for notched structures. Theor. Appl. Fract. Mech. 48(2):140–151, 2007.

    Article  CAS  Google Scholar 

  15. Bessias, N., G. Sfyroeras, and K. G. Moulakakis. Renal artery thrombosis caused by stent fracture in a single kidney patient. J. Endovasc. Ther. 12:516–520, 2005.

    Article  PubMed  Google Scholar 

  16. Chang, C. K., C. P. Huded, B. W. Nolan, and R. J. Powell. Prevalence and clinical significance of stent fracture and deformation following carotid artery stenting. J. Vasc. Surg. 54(3):685–90, 2011.

    Article  PubMed  Google Scholar 

  17. Charkaluk, E., A. Constantinescu, F. Szmytka, and S. Tabibian. Probability density functions: from porosities to fatigue lifetime. Int. J. Fatigue 63:127–136, 2014.

    Article  Google Scholar 

  18. Cheng, C., G. Choi, R. Herfkens, and C. Taylor. The effect of aging on deformations of the superficial femoral artery resulting from hip and knee flexion: Potential clinical implications. J. Vasc. Interv. Radiol. 21(2):195–202, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Chen, Q., G. A. Thouas. Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 87:1–57, 2015.

    Article  Google Scholar 

  20. Chung, W. S., C. S. Park, K. B. Seung, P. J. Kim, J. M. Lee, B. K. Koo, Y. S. Jang, J. Y. Yang, J. H. Yoon, D. I. Kim, Y. W. Yoon, J. S. Park, Y. H. Cho, and S. J. Park. The incidence and clinical impact of stent strut fractures developed after drugeluting stent implantation. Int. J. Cardiol. 125(3):325–331, 2008.

    Article  PubMed  Google Scholar 

  21. Constantinescu, A., K. Van Dang, and M. H. Maitournam. A unified approach for high and low cycle fatigue based on shakedown concepts. Fatigue Fract. Eng. Mater. Struct. 26:561–568, 2003.

    Article  Google Scholar 

  22. Coppi, G., R. Moratto, J. Veronesi, E. Nicolosi, and R. Silingardi. Carotid artery stent fracture identification and clinical relevance. J. Vasc. Surg. 51(6):1397–405, 2010.

    Article  PubMed  Google Scholar 

  23. Donnelly, E. Geometry effect in the fatigue behaviour of microscale 316L stainless steel specimens. PhD thesis, National University of Ireland, Galway, 2012.

  24. Dordoni, E., A. Meoli, W. Wu, G. Dubini, F. Migliavacca, G. Pennati, and L. Petrini. Fatigue behaviour of nitinol peripheral stents: the role of plaque shape studied with computational structural analyses. Med. Eng. Phys. 36(7):842–849, 2014.

    Article  PubMed  Google Scholar 

  25. Dordoni, E., L. Petrini, W. Wu, F. Migliavacca, G. Dubini, and G. Pennati. Computational modeling to predict fatigue behavior of NiTi stents: what do we need? J. Funct. Biomater. 6(2):299, 2015.

    Article  PubMed Central  PubMed  Google Scholar 

  26. dos Santos, H. A. F., F. Auricchio, and M. Conti. Fatigue life assessment of cardiovascular balloon-expandable stents: a two-scale plasticity-damage model approach. J. Mech. Behav. Biomed. 15:78–92, 2012.

    Article  Google Scholar 

  27. Foerst, J., T. Ball, and A. V. Kaplan. Postmortem in situ micro-CT evaluation of coronary stent fracture. Catheter Cardiovasc. Interv. 76(4):527–31, 2010.

    Article  PubMed  Google Scholar 

  28. Gall, K., H. Sehitoglu. The role of texture in tension–compression asymmetry in polycrystalline NiTi. Int. J. Plast. 15:69–92, 1999.

    Article  CAS  Google Scholar 

  29. Garcia, L., M. R. Jaff, C. Metzger, G. Sedillo, A. Pershad, F. Zidar, R. Patlola, R. G. Wilkins, A. Espinoza, A. Iskander, et al. Wire-interwoven nitinol stent outcome in the superficial femoral and proximal popliteal arteries twelve-month results of the superb trial. Circ. Cardiovasc. Interv. 8(5):e000937, 2015.

    Article  PubMed  Google Scholar 

  30. Garcia-Toca, M., H. E. Rodriguez, P. A. Naughton, A. Keeling, S. V. Phade, M. D. Morasch, M. R. Kibbe, and M. K. Eskandari. Are carotid stent fractures clinically significant? Cardiovasc. Intervent Radiol. 35:263–267, 2012.

    Article  PubMed  Google Scholar 

  31. Garg, S., P. W. Serruys. Coronary stents: current status. J. Am. Coll. Cardiol. 56(10):S1–S42, 2010.

    Article  CAS  PubMed  Google Scholar 

  32. Gastaldi, D., V. Sassi, L. Petrini, M. Vedani, S. Trasatti, and F. Migliavacca. Continuum damage model for bioresorbable magnesium alloy devices—application to coronary stents. J. Mech. Behav. Biomed. Mater. 4:352–365, 2011.

    Article  CAS  PubMed  Google Scholar 

  33. Glenn, R., J. Lee. Accelerated pulsite fatigue testing of Ni-Ti coronary stents. In A. Pelton, D. Hodgson, S. Russell, and T. Duerig, editors, Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies (SMST 1997). SMST Society, Pacific Grove, California, CA, USA, 1997.

  34. Gong, X., A. Pelton, T. Duerig, N. Rebelo, and K. Perry. Finite element analysis and experimental evaluation of superelastic nitinol stent. In Proceedings of the International Conference on Shape Memory and Superelastic Technologies (SMST2003), pp. 453–462, 2003.

  35. Grogan, J. A., S. B. Leen, and P. E. McHugh. Comparing coronary stent material performance on a common geometric platform through simulated bench testing. J. Mech. Behav. Biomed. Mater. 12:129–138, 2012.

    Article  CAS  PubMed  Google Scholar 

  36. Grogan, J. A., S. B. Leen, and P. E. McHugh. Computational micromechanics of bioabsorbable magnesium stents. J. Mech. Behav. Biomed. Mater. 34:93–105, 2014.

    Article  CAS  PubMed  Google Scholar 

  37. Guerchais, R., F. Morel, N. Saintier, and C. Robert. Influence of the microstructure and voids on the high-cycle fatigue strength of 316l stainless steel under multiaxial loading. Fatigue Fract. Eng. Mater. Struct. 38(9):1087–1104, 2015.

    Article  CAS  Google Scholar 

  38. Halwani, D. O., P. P. G. Anderson, B. C. Brott, A. S. Anayiotos, and J. E. Lemons. The role of vascular calcificationin inducing fatigue and fracture of coronary stents. J. Biomed. Mater. Res. B Appl. Biomater. 100(1):292–304, 2012.

    Article  PubMed  Google Scholar 

  39. Harvey, S. M. Nitinol stent fatigue in a peripheral human artery subjected to pulsatile and articulation loading. J. Mater. Eng. Perform. 20:697–705, 2011.

    Article  CAS  Google Scholar 

  40. W. Higashiura, Y. Kubota, S. Sakaguchi, N. Kurumatani, M. Nakamae, K. Nishimine, and K. Kichikawa. Prevalence, factors, and clinical impact of self-expanding stent fractures following iliac artery stenting. J. Vasc. Surg., 49(3):645–652, 2009.

    Article  PubMed  Google Scholar 

  41. Hsiao, H. M., A. Nikanorov, S. Prabhu, and M. K. Razavi. Respiration-induced kidney motion on cobalt-chromium stent fatigue resistance. J. Biomed. Mater. Res. B Appl. Biomater. 91B(2):508–516, 2009.

    Article  CAS  Google Scholar 

  42. Hsiao, H. M., S. Prabhu, A. Nikanorov, and M. Razavi. Renal artery stent bending fatigue analysis. J. Med. Devices 1(2):113–118, 2006.

    Article  Google Scholar 

  43. Hsiao, H. M., M. T. Yin. An intriguing design concept to enhance the pulsatile fatigue life of self-expanding stents. Biomed. Microdevices 16(1):133–41, 2014.

    Article  CAS  PubMed  Google Scholar 

  44. http://worldwide.bose.com/electroforce.

  45. International Standard ISO 25539-2. Cardiovascular implants—endovascular devices—Part 2: Vascular stents, 2012.

  46. Jabbado, M., H. Maitournam. A high-cycle fatigue life model for variable amplitude multiaxial loading. Fatigue Fract. Eng. Mater. Struct. 31(1):67–75, 2008.

    Article  Google Scholar 

  47. James, B. A., R. A. Sire. Fatigue-life assessment and validation techniques for metallic vascular implants. Biomaterials 31(2):181–186, 2010.

    Article  CAS  PubMed  Google Scholar 

  48. Kapnisis, K., G. Constantinides, H. Georgiou, D. Cristea, C. Gabor, D. Munteanu, B. Brott, P. Anderson, J. Lemons, and A. Anayiotos. Multi-scale mechanical investigation of stainless steel and cobalt-chromium stents. J. Mech. Behav. Biomed. Mater. 40:240–251, 2014.

    Article  CAS  PubMed  Google Scholar 

  49. Kapnisis, K. K., D. O. Halwani, B. C. Brott, P. G. Anderson, J. E. Lemons, and A. S. Anayiotos. Stent overlapping and geometric curvature influence the structural integrity and surface characteristics of coronary nitinol stents. J. Mech. Behav. Biomed. Mater. 20:227–236, 2013.

    Article  CAS  PubMed  Google Scholar 

  50. Kinkel, S., N. Wollmerstedt, J. A. Kleinhans, C. Hendrich, and C. Heisel. Patient activity after total hip arthroplasty declines with advancing age. Clin. Orthop. Relat. Res. 467(8):2053–2058, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Lagoudas, D. C., D. J. Hartl, Y. Chemisky, L. Machado, and P. Popov. Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. Int. J. Plast. 32–33:155–183, 2012.

    Article  Google Scholar 

  52. Lewitton, S., A. Babaev. Superficial femoral artery stent fracture that led to perforation, hematoma and deep venous thrombosis. J. Invasive Cardiol. 20(9):479–81, 2008.

    PubMed  Google Scholar 

  53. Li, J., Q. Luo, Z. Xie, Y. Li, and Y. Zeng. Fatigue life analysis and experimental verification of coronary stent. Heart Vessels 25(4):333–337, 2010.

    Article  PubMed  Google Scholar 

  54. Lin, Y., X. Tang, W. Fu, R. Kovach, J. C. George, and D. Guo. Stent fractures after superficial femoral artery stenting: risk factors and impact on patency. J. Endovasc. Ther. 22(3):319–326, 2015.

    Article  PubMed  Google Scholar 

  55. Marrey, R. V., R. Burgermeister, R. B. Grishaber, and R. O. Ritchie. Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis. Biomaterials 27:1988–2000, 2006.

    Article  CAS  PubMed  Google Scholar 

  56. McGarry, J. P., B. P. O’Donnell, P. E. McHugh, and J. G. McGarry. Analysis of the mechanical performance of a cardiovascular stent design based on micromechanical modelling. Comput. Mater. Sci. 31:421–438, 2004.

    Article  Google Scholar 

  57. Meoli, A., E. Dordoni, L. Petrini, F. Migliavacca, G. Dubini, and G. Pennati. Computational study of axial fatigue for peripheral nitinol stents. J. Mater. Eng. Perform. 23(7):2606–2613, 2014.

    Article  CAS  Google Scholar 

  58. Morlacchi, S., G. Pennati, L. Petrini, G. Dubini, and F. Migliavacca. Influence of plaque calcifications on coronary stent fracture: a numerical fatigue life analysis including cardiac wall movement. J. Biomech. 47(4):899–907, 2014.

    Article  PubMed  Google Scholar 

  59. Z. Moumni, W. Zaki, and H. Maitournam. Cyclic behaviour and energy approach of the fatigue of Shape Memory Alloys. J. Mech. Mater. Struct., 4(2):395–411, 2009.

    Article  Google Scholar 

  60. Müller-Hülsbeck, S., P. J. Schäfer, N. Charalambous, H. Yagi, M. Heller, and T. Jahnke. Comparison of second-generation stents for application in the superficial femoral artery: an in vitro evaluation focusing on stent design. J. Endovasc. Ther. 17(6):767–776, 2010.

    Article  PubMed  Google Scholar 

  61. Neil, N. Stent fracture in the superficial femoral and proximal popliteal arteries: literature summary and economic impacts. Perspect. Vasc. Surg. Endovasc. Ther. 25(1–2):20–27, 2013.

    Article  PubMed  Google Scholar 

  62. Nichols, M., N. Townsend, P. Scarborough, and M. Rayner. Cardiovascular disease in europe 2014: epidemiological update. Eur. Heart J. 35(42):2950–9, 2014.

    Article  PubMed  Google Scholar 

  63. Nikanorov, A., H. B. Smouse, K. Osman, M. Bialas, S. Shrivastava, and L. B. Schwartz. Fracture of self-expanding nitinol stents stressed in vitro under simulated intravascular conditions. J. Vasc. Surg. 48(2):435–440, 2008.

    Article  PubMed  Google Scholar 

  64. Paulsen, F., J. Waschke. Sobotta Atlas of Human Anatomy, 15th Edition 2013 ©Elsevier GmbH, Urban & Fischer, Munich.

  65. Peigney, M. Shakedown theorems and asymptotic behaviour of solids in non-smooth mechanics. Eur. J. Mech. A 29(5):784–793, 2010.

    Article  Google Scholar 

  66. Pelton, A. R., V. Schroeder, M. R. Mitchell, X.-Y. Gong, M. Barney, and S. W. Robertson. Fatigue and durability of Nitinol stents. J. Mech. Behav. Biomed. 1:153–164, 2008.

    Article  CAS  Google Scholar 

  67. Petrini, L., W. Wu, E. Dordoni, A. Meoli, F. Migliavacca, and G. Pennati. Fatigue behavior characterization of nitinol for peripheral stents. Funct. Mater. Lett. 05(01):1250012, 2012.

    Article  Google Scholar 

  68.  Petrini, L., E. Dordoni, W. Wu, C. Guala, C. Silvestro, F. Migliavacca, and G. Pennati. Fatigue resistance of Nitinol peripheral stents. In Proceedings of 6th ECCOMAS Conference on Smart Structures and Materials (SMART 2013), 2013.

  69. Rebelo, N., A. Zipse, M. Schlun, and G. Dreher. A material model for the cyclic behavior of nitinol. J. Mater. Eng. Perform. 20:605–612, 2011.

    Article  CAS  Google Scholar 

  70. Robertson, S. W., C. P. Cheng, and M. K. Razavi. Biomechanical response of stented carotid arteries to swallowing and neck motion. J. Endovasc Ther. 15(6):663–71, 2008.

    Article  PubMed  Google Scholar 

  71. Robertson, S. W., D. B. Jessup, I. J. Boero, and C. P. Cheng. Right renal artery in vivo stent fracture. J. Vasc. Interv. Radiol. 19(3):439–442, 2008.

    Article  PubMed  Google Scholar 

  72. Robertson, S. W., A. R. Pelton, and R. O. Ritchie. Mechanical fatigue and fracture of Nitinol. Int. Mater. Rev. 57(1):1–37, 2012.

    Article  CAS  Google Scholar 

  73. Robertson, S. W., R. O. Ritchie. A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic Nitinol tube. J. Biomed. Mater. Res. B 84B(1):26–33, 2008.

    Article  CAS  Google Scholar 

  74. Runciman, A., D. Xu, A. R. Pelton, and R. O. Ritchie. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices. Biomaterials 32:4987–4993, 2011.

    Article  CAS  PubMed  Google Scholar 

  75. Scheinert, D., S. Scheinert, J. Sax, C. Piorkowski, S. Braunlich, and M. Ulrich. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J. Am. Coll. Cardiol. 45:312–315, 2005.

    Article  PubMed  Google Scholar 

  76. Shechter, G., J. R. Resar, and E. R. McVeigh. Displacement and velocity of the coronary arteries: cardiac and respiratory motion. IEEE Trans. Med. Imaging 25(3):369–375, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Sources: Cdc.gov—heart disease facts american heart association—2015 heart disease and stroke update, compiled by aha, cdc, nih and other governmental sources, 2014.

  78. Souza, A. C., E. N. Mamiya, and N. Zouain. Three-dimensional model for solids undergoing stress-induced phase transformations. Eur. J. Mech. A-Solid 17:789–806, 1998.

    Article  Google Scholar 

  79. Sweeney, C. A., P. E. McHugh, J. P. McGarry, and S. B. Leen. Micromechanical methodology for fatigue in cardiovascular stents. Int. J. Fatigue 44:202–216, 2012.

    Article  CAS  Google Scholar 

  80. Sweeney, C. A., B. O’Brien, F. P. E. Dunne, P. E. McHugh, and S. B. Leen. Strain-gradient modelling of grain size effects on fatigue of cocr alloy. Acta Mater. 78:341–353, 2014.

    Article  CAS  Google Scholar 

  81. Sweeney, C. A., B. O’Brien, F. P. E. Dunne, P. E. McHugh, and S. B. Leen. Micro-scale testing and micromechanical modelling for high cycle fatigue of cocr stent material. J. Mech. Behav. Biomed. Mater. 46:244–260, 2015.

    Article  CAS  PubMed  Google Scholar 

  82. Sweeney, C. A., B. O’Brien, P. E. McHugh, and S. B. Leen. Experimental characterisation for micromechanical modelling of CoCr stent fatigue. Biomaterials 35:36–48, 2014.

    Article  CAS  PubMed  Google Scholar 

  83. Tabanli, R. M., N. K. Simha, and B. T. Berg. Mean strain effects on the fatigue properties of superelastic NiTi. Metall. Mater. Trans. A 32:1866–1869, 2001.

    Article  Google Scholar 

  84. US Food and Drug Administration. Non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems: guidance for industry and FDA staff. US Department of Health and Human Services; Food and Drug Administration, Centre for Devices and Radiological, Health, April 18th 2010.

  85. Van  Dang, K. High-cycle metal fatigue in the context of mechanical design. In: CISM Courses and Lectures no 392 edited by K. Dang Van and I. V. Papadopoulos. Springer, 57–88, 1999.

  86. Weafer, F. M., M. S. Bruzzi. Influence of microstructure on the performance of nitinol: a computational analysis. J. Mater. Eng. Perform. 23(7):2539–2544, 2014.

    Article  CAS  Google Scholar 

  87. Weiss, S., H. Szymczak, and A. Meissner. Fatigue and endurance of coronary stents. Materialwissenschaft und Werkstofftechnik 40(1–2):61–64, 2009.

    Article  Google Scholar 

  88. Wiersma, S., F. Dolan, and D. Taylor. Fatigue and fracture in materials used for micro-scale biomedical components. Biomed. Mater. Eng. 16(2):137–146, 2006.

    CAS  PubMed  Google Scholar 

  89. Wiersma, S., D. Taylor. Fatigue of materials used in microscopic components. Fatigue Fract. Eng. Mater. Struct. 28(12):1153–1160, 2005.

    Article  Google Scholar 

  90. World Health Organization (WHO). World Health Statistics 2014. Technical Report, 2014.

  91. Zaki, W., Z. Moumni. A 3D model of the cyclic thermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids 55(11):2427–2454, 2007.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partially funded by: the Cariplo Foundation through the Project No. 2009.2822; ERC Starting Grant through the Project ISOBIO: Isogeometric Methods for Biomechanics (No. 259229); Ministero dell’Istruzione, dell’Università e della Ricerca through the Project No. 2010BFXRHS; the French National Research Agency (Project Fast3D-ANR-11-BS09-012-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Scalet.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auricchio, F., Constantinescu, A., Conti, M. et al. Fatigue of Metallic Stents: From Clinical Evidence to Computational Analysis. Ann Biomed Eng 44, 287–301 (2016). https://doi.org/10.1007/s10439-015-1447-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1447-8

Keywords

Navigation