Skip to main content
Log in

Rib Geometry Explains Variation in Dynamic Structural Response: Potential Implications for Frontal Impact Fracture Risk

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The human thorax is commonly injured in motor vehicle crashes, and despite advancements in occupant safety rib fractures are highly prevalent. The objective of this study was to quantify the ability of gross and cross-sectional geometry, separately and in combination, to explain variation of human rib structural properties. One hundred and twenty-two whole mid-level ribs from 76 fresh post-mortem human subjects were tested in a dynamic frontal impact scenario. Structural properties (peak force and stiffness) were successfully predicted (p < 0.001) by rib cross-sectional geometry obtained via direct histological imaging (total area, cortical area, and section modulus) and were improved further when utilizing a combination of cross-sectional and gross geometry (robusticity, whole bone strength index). Additionally, preliminary application of a novel, adaptive thresholding technique, allowed for total area and robusticity to be measured on a subsample of standard clinical CT scans with varied success. These results can be used to understand variation in individual rib response to frontal loading as well as identify important geometric parameters, which could ultimately improve injury criteria as well as the biofidelity of anthropomorphic test devices (ATDs) and finite element (FE) models of the human thorax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Agnew, A. M., M. Schafman, K. Moorhouse, S. E. White, and Y. S. Kang. The effect of age on the structural properties of human ribs. J. Mech. Behav. Biomed. Mater. 41:302–314, 2015.

    Article  PubMed  Google Scholar 

  2. Armstrong, D. W., J. P. H. Rue, J. H. Wilckens, and F. J. Frassica. Stress fracture injury in young military men and women. Bone 35:806–816, 2004.

    Article  PubMed  Google Scholar 

  3. Cavanaugh, J. M. The biomechanics of thoracic trauma. In: Accidental Injury Biomechanics and Prevention, edited by A. M. Nahum, and J. W. Melvin. New York: Springer, 1993, pp. 362–390.

    Chapter  Google Scholar 

  4. Cesari, D., and R. Bouquet. Behavior of human surrogates thorax under belt loading. SAE Int. 902310:73–81, 1990.

    Google Scholar 

  5. Cesari, D., and R. Bouquet. Comparison of Hybrid III and human cadaver thorax deformations loaded by a thoracic belt. Stapp Car Crash Conf. 38:65–76, 2010.

    Google Scholar 

  6. Charpail, E., X. Trosseille, P. Petit, S. Laporte, F. Lavaste, and G. Vallancien. Characterization of PMHS ribs: a new test methodology. Stapp Car Crash J. 49:183–198, 2005.

    PubMed  Google Scholar 

  7. Cormier, J. M., J. D. Stitzel, S. M. Duma, and F. Matsuoka. Regional variation in the structural response and geometrical properties of human ribs. Assoc. Adv. Automot. Med. 49:153–170, 2005.

    Google Scholar 

  8. Dominguez V. M., Y. S. Kang, M. M. Murach, N. M. Crowe, and A. M. Agnew. Bone area vs cortical area: considering intracortical porosity when predicting rib structural properties. In: Proceedings of the International Research Council on the Biomechanics of Impact, Málaga, Spain, 2016

  9. Goldman, H. M., N. A. Hampson, J. J. Guth, D. Lin, and K. J. Jepsen. Intracortical remodeling parameters are associated with measures of bone robustness. Anat. Rec. 1817–1828:2014, 1828.

    Google Scholar 

  10. Holcomb, J. B., N. R. McMullin, R. A. Kozar, M. H. Lygas, and F. A. Moore. Morbidity from rib fractures increases after age 45. J. Am. Coll. Surg. 196:549–555, 2003.

    Article  PubMed  Google Scholar 

  11. Holcombe, S. A., S. C. Wang, and J. B. Grotberg. The effect of rib shape on stiffness. Stapp Car Crash J. 60:11–24, 2016.

    PubMed  Google Scholar 

  12. Jepsen, K. J., A. Centi, G. F. Duarte, K. Galloway, H. M. Goldman, N. Hampson, J. M. Lappe, D. M. Cullen, J. Greeves, R. Izard, B. C. Nindl, W. J. Kraemer, C. H. Negus, and R. K. Evans. Biological constraints that limit compensation of a common skeletal trait variant lead to inequivalence of tibial function among healthy young adults. J. Bone Miner. Res. 26:2872–2885, 2011.

    Article  PubMed  Google Scholar 

  13. Jepsen, K. J., R. K. Evans, C. H. Negus, J. J. Gagnier, A. Centi, T. Erlich, A. Hadid, R. Yanovich, and D. S. Moran. Variation in tibial functionality and fracture susceptibility among healthy, young adults arises from the acquisition of biologically distinct sets of traits. J. Bone Miner. Res. 28:1290–1300, 2013.

    Article  PubMed  Google Scholar 

  14. Kallieris, D., P. D. Zerial, A. Rizzetti, and R. Mattern. Prediction of thoracic injuries in frontal collisions. In: Proceedings of the 18th International Technical Conference on the Enhanced Safety of Vehicles. National Highway Traffic Safety Administration, Washington, DC, 1998, pp. 1550–1563

  15. Kemper, A. R., C. McNally, C. A. Pullins, L. J. Freeman, S. M. Duma, and S. M. Rouhana. The biomechanics of human ribs: material and structural properties from dynamic tension and bending tests. Stapp Car Crash J. 51:235–273, 2007.

    PubMed  Google Scholar 

  16. Kent, R. W., J. R. Crandall, and J. R. Bolton. The influence of superficial soft tissues and restraint condition on thoracic skeletal injury prediction. Stapp Car Crash J. 45:183–203, 2001.

    CAS  PubMed  Google Scholar 

  17. Kent, R., and J. Patrie. Chest deflection tolerance to blunt anterior loading is sensitive to age but not load distribution. Forensic Sci. Int. 149:121–128, 2005.

    Article  PubMed  Google Scholar 

  18. Lee, E. L., M. Craig, and M. Scarboro. Real-world rib fracture patterns in frontal crashes in different restraint conditions. Traffic Inj. Prev. 16:S115–S123, 2015.

    Article  PubMed  Google Scholar 

  19. Li, Z., M. W. Kindig, D. Subit, and R. W. Kent. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction. Med. Eng. Phys. 32:998–1008, 2010.

    Article  PubMed  Google Scholar 

  20. Lien, Y.-C., C.-H. Chen, and H.-C. Lin. Risk factors for 24-hour mortality after traumatic rib fractures owing to motor vehicle accidents: a nationwide population-based study. Ann. Thorac. Surg. 88:1124–1130, 2009.

    Article  PubMed  Google Scholar 

  21. Morgan, R. M., R. H. Eppinger, M. P. Haffner, N. Yoganandan, F. A. Pintar, A. J. Sances, J. R. Crandall, W. D. Pilkey, G. S. Klopp, D. Kallieris, E. Miltner, R. Mattern, S. M. Kuppa, and C. L. Sharpless. Thoracic trauma assessment formulations for restrained drivers in simulated frontal impacts. Stapp Car Crash J. 38:15–34, 1994.

    Google Scholar 

  22. Murach, M. M., A. Bazyk, E. Misicka, Y. Kang, K. Moorhouse, and A. M. Agnew. Utilization of a novel method for measuring cortical thickness to investigate variation with age in male human ribs. In: Proceedings of the International Research Council on the Biomechanics of Impact, Málaga, Spain, 2016

  23. Murach, M. M., S. H. Schlecht, and A. M. Agnew. Robusticity in the axial skeleton: an example of the rib. Am. J. Phys. Anthropol. 156:231–232, 2015.

    Google Scholar 

  24. Nahum, A., C. Gadd, D. Schneider, and C. Kroell. The biomechanical basis for chest impact protection: I. force-deflection characteristics of the thorax. J. Trauma 11:874–882, 1971.

    Article  CAS  PubMed  Google Scholar 

  25. Nahum, A., D. Schneider, and C. Kroell. Cadaver skeletal response to blunt thoracic impact. Stapp Car Crash J. 19:259–293, 1975.

    Google Scholar 

  26. Pattimore, D., P. Thomas, and S. H. Dave. Torso injury patterns and mechanisms in car crashes: an additional diagnostic tool. Injury 23:123–126, 1992.

    Article  CAS  PubMed  Google Scholar 

  27. Perz, R., J. Toczyski, and D. Subit. Variation in the human ribs geometrical properties and mechanical response based on X-ray computed tomography images resolution. J. Mech. Behav. Biomed. Mater. 41:292–301, 2015.

    Article  PubMed  Google Scholar 

  28. Rupp, J. D., C. A. C. Flannagan, C. N. Hoff, and R. M. Cunningham. Effects of osteoporosis on AIS 3 + injury risk in motor vehicle crashes. Accid. Anal. Prev. 42:2140–2143, 2010.

    Article  PubMed  Google Scholar 

  29. SAE. Instrumentation for Impact Test. SAE J211/1 MAR 1995, 1995 SAE Handbook Volume 4—On-Highway Vehicles & Off-Highway Machinery. Society of Automo- tive Engineers, Warrendale, PA, 1995

  30. Schafman, M. A., Y.-S. Kang, K. Moorhouse, S. E. White, J. H. Bolte, and A. M. Agnew. Age and sex alone are insufficient to predict human rib structural response to dynamic A-P loading. J. Biomech. 49:3516–3522, 2016.

    Article  PubMed  Google Scholar 

  31. Schlecht, S. H., E. M. R. Bigelow, and K. J. Jepsen. Mapping the natural variation in whole bone stiffness and strength across skeletal sites. Bone 67:15–22, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schlecht, S. H., and K. J. Jepsen. Functional integration of skeletal traits: an intraskeletal assessment of bone size, mineralization, and volume covariance. Bone 56:127–138, 2013.

    Article  PubMed  Google Scholar 

  33. Singer, J. D. Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. J. Educ. Behav. Stat. 23:323–355, 1998.

    Article  Google Scholar 

Download references

Acknowledgments

This research was made possible by the anatomical donors of The Ohio State University and Lifeline of Ohio, and we are grateful for their generous gifts to further science and save lives. Funding for this study was provided by the National Highway Traffic Safety Administration (NHTSA) through Contract #DTNH2214D00348L. The views expressed within are solely those of the authors and do not reflect the opinions of NHTSA. Authors greatly appreciate contributions to experimental testing and data analysis and interpretation from the following: Jason Stammen, HyunJung Kwon, Rod Herriott, Karl Jepsen, Mark Whitmer, Michelle Whitmer, Rakshit Ramachandra, Arrianna Willis, David Stark, Victoria Dominguez, Timothy Gocha, Elina Misicka, and Susan White.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda M. Agnew.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Appendix

Appendix

See Table 4 for specific rib data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murach, M.M., Kang, YS., Goldman, S.D. et al. Rib Geometry Explains Variation in Dynamic Structural Response: Potential Implications for Frontal Impact Fracture Risk. Ann Biomed Eng 45, 2159–2173 (2017). https://doi.org/10.1007/s10439-017-1850-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1850-4

Keywords

Navigation