Skip to main content
Log in

Learning-Based Cell Injection Control for Precise Drop-on-Demand Cell Printing

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Drop-on-demand (DOD) printing is widely used in bioprinting for tissue engineering because of little damage to cell viability and cost-effectiveness. However, satellite droplets may be generated during printing, deviating cells from the desired position and affecting printing position accuracy. Current control on cell injection in DOD printing is primarily based on trial-and-error process, which is time-consuming and inflexible. In this paper, a novel machine learning technology based on Learning-based Cell Injection Control (LCIC) approach is demonstrated for effective DOD printing control while eliminating satellite droplets automatically. The LCIC approach includes a specific computational fluid dynamics (CFD) simulation model of piezoelectric DOD print-head considering inverse piezoelectric effect, which is used instead of repetitive experiments to collect data, and a multilayer perceptron (MLP) network trained by simulation data based on artificial neural network algorithm, using the well-known classification performance of MLP to optimize DOD printing parameters automatically. The test accuracy of the LCIC method was 90%. With the validation of LCIC method by experiments, satellite droplets from piezoelectric DOD printing are reduced significantly, improving the printing efficiency drastically to satisfy requirements of manufacturing precision for printing complex artificial tissues. The LCIC method can be further used to optimize the structure of DOD print-head and cell behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ahlfeld, T., A. R. Akkineni, Y. Förster, T. Köhler, S. Knaack, M. Gelinsky, and A. Lode. Design and fabrication of complex scaffolds for bone defect healing: combined 3D plotting of a calcium phosphate cement and a growth factor-loaded hydrogel. Ann. Biomed. Eng. 45:224–236, 2017.

    Article  PubMed  Google Scholar 

  2. Barron, V., K. Merghani, G. Shaw, C. Coleman, J. Hayes, S. Ansboro, A. Manian, G. O’Malley, E. Connolly, and A. Nandakumar. Evaluation of cartilage repair by mesenchymal stem cells seeded on a PEOT/PBT scaffold in an osteochondral defect. Ann. Biomed. Eng. 43:2069–2082, 2015.

    Article  CAS  PubMed  Google Scholar 

  3. Bogy, D. B., and F. Talke. Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices. IBM J. Res. Dev. 28:314–321, 1984.

    Article  Google Scholar 

  4. Brackbill, J., D. B. Kothe, and C. Zemach. A continuum method for modeling surface tension. J. Comput. Phys. 100:335–354, 1992.

    Article  CAS  Google Scholar 

  5. Dey, R., A. Ghoshal, and B. Tudu. Electromyogram (EMG) signal categorization in parkinson’s disease tremor detection by applying MLP (Multilayer Perceptron) technique: a review. Advances in Systems, Control and Automation, Singapore: Springer, 2018, pp. 693–699.

    Chapter  Google Scholar 

  6. Dhanarajan, G., M. Mandal, and R. Sen. A combined artificial neural network modeling–particle swarm optimization strategy for improved production of marine bacterial lipopeptide from food waste. Biochem. Eng. J. 84:59–65, 2014.

    Article  CAS  Google Scholar 

  7. Dos Santos, E. B., R. Pistor, and A. P. Gerlich. Pulse profile and metal transfer in pulsed gas metal arc welding: droplet formation, detachment and velocity. Sci. Technol. Weld. Join. 22:627–641, 2017.

    Article  CAS  Google Scholar 

  8. Dudhagara, D. R., R. K. Rajpara, J. K. Bhatt, H. B. Gosai, and B. P. Dave. Bioengineering for polycyclic aromatic hydrocarbon degradation by Mycobacterium litorale: Statistical and artificial neural network (ANN) approach. Chemometrics Intell. Lab. Syst. 159:155–163, 2016.

    Article  CAS  Google Scholar 

  9. Fluent, A. 14.5, theory guide. Canonsburg: Ansys Inc., 2012.

    Google Scholar 

  10. Hatami, M., and D. Ganji. Natural convection of sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates by analytical and numerical methods. Case Stud. Thermal Eng. 2:14–22, 2014.

    Article  Google Scholar 

  11. Kani, M. H., E. C. Chan, R. C. Young, T. Butler, R. Smith, and J. W. Paul. 3D cell culturing and possibilities for myometrial tissue engineering. Ann. Biomed. Eng. 45:1746–1757, 2017.

    Article  Google Scholar 

  12. Kotsiantis, S. B., I. Zaharakis, and P. Pintelas. Supervised machine learning: A review of classification techniques. In: Emerging Artificial Intelligence Applications in Computer Engineering, edited by R. Mizoguchi, M. Musen, N. Zhong, J. Breuker, R. Dieng-Kuntz, N. Guarino, J. N. Kok, and J. Liu. Amsterdam: IOS Press, 2007, pp. 3–24.

    Google Scholar 

  13. Lai, J. M., C. Y. Huang, C. H. Chen, K. Linliu, and J. D. Lin. Influence of liquid hydrophobicity and nozzle passage curvature on microfluidic dynamics in a drop ejection process. J. Micromech. Microeng. 20:015033, 2010.

    Article  CAS  Google Scholar 

  14. Li, E. Q., Q. Xu, J. Sun, J. Y. H. Fuh, Y. S. Wong, and S. T. Thoroddsen. Design and fabrication of a PET/PTFE-based piezoelectric squeeze mode drop-on-demand inkjet printhead with interchangeable nozzle. Sens. Actuator A Phys. 163:315–322, 2010.

    Article  CAS  Google Scholar 

  15. Malda, J., J. Visser, F. P. Melchels, T. Jungst, W. E. Hennink, W. J. Dhert, J. Groll, and D. W. Hutmacher. 25th anniversary article: Engineering hydrogels for biofabrication. Adv. Mater. 25:5011–5028, 2013.

    Article  CAS  PubMed  Google Scholar 

  16. Milo, R., and R. Phillips. Cell Biology by the Numbers. Abington: Garland Science, 2015.

    Google Scholar 

  17. Moon, S., B. Y. Ryu, J. Choi, B. Jo, and R. J. Farris. The morphology and mechanical properties of sodium alginate based electrospun poly (ethylene oxide) nanofibers. Polym. Eng. Sci. 49:52–59, 2009.

    Article  CAS  Google Scholar 

  18. Muthamizhi, K., P. Kalaichelvi, S. T. Powar, and R. Jaishree. Investigation and modelling of surface tension of power-law fluids. RSC Adv. 4:9771–9776, 2014.

    Article  CAS  Google Scholar 

  19. Nasir, A. A., M. Y. Mashor, and H. Rosline. Classification of acute leukaemia cells using multilayer perceptron and simplified fuzzy ARTMAP neural networks. Int. Arab J. Inf. Technol. 10:356–364, 2013.

    Google Scholar 

  20. Nishiyama, Y., M. Nakamura, C. Henmi, K. Yamaguchi, S. Mochizuki, H. Nakagawa, and K. Takiura. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. J. Biomech. Eng. Trans. 131:35, 2009.

    Google Scholar 

  21. Riedmiller, M. Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms. Comput. Stand. Interfaces. 16(3):265–278, 1994.

    Article  Google Scholar 

  22. Ross, S. E., Z. Ouyang, S. Rajagopalan, and T. M. Bruns. Evaluation of decoding algorithms for estimating bladder pressure from dorsal root ganglia neural recordings. Ann. Biomed. Eng. 46:233–246, 2018.

    Article  PubMed  Google Scholar 

  23. Suh, Y., and G. Son. A sharp-interface level-set method for simulation of a piezoelectric inkjet process. Numer Heat Tranf. B Fundam. 55:295–312, 2009.

    Article  Google Scholar 

  24. Tsinalis, O., P. M. Matthews, and Y. Guo. Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders. Ann. Biomed. Eng. 44:1587–1597, 2016.

    Article  PubMed  Google Scholar 

  25. Vatankhah, E., D. Semnani, M. P. Prabhakaran, M. Tadayon, S. Razavi, and S. Ramakrishna. Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone gelatin scaffolds. Acta Biomater. 10:709–721, 2014.

    Article  CAS  PubMed  Google Scholar 

  26. Wust, S., R. Muller, and S. Hofmann. Controlled positioning of cells in biomaterials-approaches towards 3D tissue printing. J. Funct. Biomater. 2:119–154, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xu, C., W. Chai, Y. Huang, and R. R. Markwald. Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol. Bioeng. 109:3152–3160, 2012.

    Article  CAS  PubMed  Google Scholar 

  28. Xu, C., M. Zhang, Y. Huang, A. Ogale, J. Fu, and R. R. Markwald. Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink. Langmuir 30:9130–9138, 2014.

    Article  CAS  PubMed  Google Scholar 

  29. Yang, Q., H. Li, M. Li, Y. Li, S. Chen, B. Bao, and Y. Song. Rayleigh instability-assisted satellite droplets elimination in inkjet printing. ACS Appl. Mater. Interfaces 9(47):41521, 2017.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Y., Y. Sun, P. Phillips, G. Liu, X. Zhou, and S. Wang. A multilayer perceptron based smart pathological brain detection system by fractional Fourier entropy. J. Med. Syst. 40:173, 2016.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Jia Shi thanks the China Scholarship Council (CSC) for the financial support of a visiting program at National University of Singapore.

Conflict of interest

The authors declare that they have no financial or personal relationships with other people or organizations that could inappropriately have influenced their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen F. Lu.

Additional information

Associate Editor Smadar Cohen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Wu, B., Song, B. et al. Learning-Based Cell Injection Control for Precise Drop-on-Demand Cell Printing. Ann Biomed Eng 46, 1267–1279 (2018). https://doi.org/10.1007/s10439-018-2054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2054-2

Keywords

Navigation