Skip to main content
Log in

Legendre–Gauss collocation methods for ordinary differential equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose two efficient numerical integration processes for initial value problems of ordinary differential equations. The first algorithm is the Legendre–Gauss collocation method, which is easy to be implemented and possesses the spectral accuracy. The second algorithm is a mixture of the collocation method coupled with domain decomposition, which can be regarded as a specific implicit Legendre–Gauss Runge–Kutta method, with the global convergence and the spectral accuracy. Numerical results demonstrate the spectral accuracy of these approaches and coincide well with theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuška, I., Guo, B.Q.: Direct and inverse approximation theorems for the p–version of the finite element method in the framework of weighted Besov spacecs, part I, approximability of functions in weighted Besov spaces. SIAM J. Numer. Anal. 39, 1512–1538 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Babuka, I., Janik, T.: The hp version of the finite element method for parabolic equations, Part 1, The p– version in time. Numer. Methods Partial Differential Equations 5, 363–399 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bernardi, C., Maday, Y.: Spectral method. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, part 5. North-Holland (1997)

  4. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Springer-Verlag, Berlin (1989)

    Google Scholar 

  5. Burrage, K., Butcher, J.C.: Stability criteria for implicit Runge–Kutta methods. SIAM J. Numer. Anal. 16, 46–57 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Butcher, J.C.: Implicit Runge–Kutta processes. Math. Comp. 18, 50–64 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  7. Butcher, J.C.: Integration processes based on Radau quadrature formulas. Math. Comp. 18, 233–244 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  8. Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations, Runge–Kutta and General Linear Methods. John Wiley & Sons, Chichester (1987)

    MATH  Google Scholar 

  9. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer-Verlag, Berlin (1988)

    MATH  Google Scholar 

  10. Donchev, T., Farkhi, E.: Stability and Euler approximations of one sided Lipschitz convex differential inclusions. SIAM J. Control Optim. 36, 780–796 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feng, K.: Difference schemes for Hamiltonian formulism and symplectic geometry. J. Comput. Math 4, 279–289 (1986)

    MATH  MathSciNet  Google Scholar 

  12. Feng, K., Qin, M.Z.: Sympletic Geometric Algorithms for Hamiltonian Systems. Zhejiang Science and Technology Press, Hangzhou (2003)

    Google Scholar 

  13. Funaro, D.: Polynomial Approximations of Differential Equations. Springer-Verlag (1992)

  14. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM-CBMS, Philadelphia (1977)

    MATH  Google Scholar 

  15. Guo, B.-y.: Spectral Methods and their Applications. World Scietific, Singapore (1998)

    MATH  Google Scholar 

  16. Guo, B.-y.: Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations. J. Math. Anal. Appl. 243, 373–408 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Guo, B.-y., Wang, L.-l.: Jacobi interpolation approximations and their applications to singular differential equations. Adv. Comput. Math. 14, 227–276 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Guo, B.-y., Wang, L.-l.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128, 1–41 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Guo, B.-y., Wang, Z.-q.: Numerical intergration based on Laguerre–Gauss interpolation. Comput. Methods Appl. Mech. Engrg. 196, 3726–3741 (2007)

    Article  MathSciNet  Google Scholar 

  20. Guo, B.-y., Wang, Z.-q., Hong-Jiong, T., Wang, L.-l.: Integration processes of ordinarny differential equations based on Laguerre–Radau interpolations. Math. Comp. 77, 181–199 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Comput. Mathematics, vol. 31. Springer-Verlag, Berlin (2002)

    Google Scholar 

  22. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equation I: Nonstiff Problems. Springer-Verlag, Berlin (1987)

    Google Scholar 

  23. Hairer, E., Wanner, G.: Solving Ordinary Differential Equation II: Stiff and Differential—Algebraic Problems. Springer-Verlag, Berlin (1991)

    Google Scholar 

  24. Higham, D.J.: Analysis of the Enright-Kamel partitioning method for stiff ordinary differential equations. IMA J. Numer. Anal. 9, 1–14 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems, The Initial Value Problem. John Wiley and Sons, Chichester (1991)

    MATH  Google Scholar 

  26. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems, AMMC7. Chapman and Hall, London (1994)

    Google Scholar 

  27. Stuart, A.M., Humphries, A.R.: Dynamical systems and Numerical Analysis. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  28. Wright, K.: Some relationship between implicit Runge–Kutta, collocation and τ-methods and their stability properties. BIT 10, 217–227 (1970)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben-yu Guo.

Additional information

Communicated by Zhongying Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, By., Wang, Zq. Legendre–Gauss collocation methods for ordinary differential equations. Adv Comput Math 30, 249–280 (2009). https://doi.org/10.1007/s10444-008-9067-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-008-9067-6

Keywords

Mathematics Subject Classifications (2000)

Navigation