Skip to main content
Log in

Factorization of Hermite subdivision operators preserving exponentials and polynomials

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we focus on Hermite subdivision operators that act on vector valued data interpreting their components as function values and associated consecutive derivatives. We are mainly interested in studying the exponential and polynomial preservation capability of such kind of operators, which can be expressed in terms of a generalization of the spectral condition property in the spaces generated by polynomials and exponential functions. The main tool for our investigation are convolution operators that annihilate the aforementioned spaces, which apparently is a general concept in the study of various types of subdivision operators. Based on these annihilators, we characterize the spectral condition in terms of factorization of the subdivision operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary subdivision. Mem. Amer. Math. Soc. 93(453) (1991)

  2. Charina, M., Conti, C., Romani, L.: Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix. Numer. Math 127(2), 223–254 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Conti, C., Romani, L.: Algebraic conditions on non-stationary subdivision symbols for exponential polynomial reproduction. J. Comput. Appl. Math. 236, 543–556 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Conti, C., Merrien, J.L., Romani, L.: Dual Hermite subdivision schemes of de rham-type. BIT Numer. Math. 54(4), 955–977 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Conti, C., Romani, L., Unser, M.: Ellipse-Preserving Hermite interpolation and Subdivision. J. Math. Anal. Appl. 215, 211–227 (2015)

  6. Dahmen, W., Micchelli, C.A.: On theory and application of exponential splines. In: Chui, C.K., Schumaker, L.L., Utreras, F. (eds.) Topics in multivariate approximation. Academic Press, New York, USA (1987)

  7. Dyn, N., Levin, D.: Analysis of Hermite-interpolatory subdivision schemes. In: Dubuc, S., Deslauriers, G (eds.) Spline functions and the theory of wavelets, pp 105–113. American Mathematical Society, Providence (1999)

  8. Dubuc, S., Merrien, J.-L.: Convergent vector and Hermite subdivision schemes. Constr. Approx. 23, 1–22 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dubuc, S., Merrien, J.L.: De Rham transform of a Hermite subdivision scheme. In: Neamtu, M., Schumaker (eds.) Approximation theory XII, San Antonio 2007, pp 121–132. Nashboro Press, Nashville (2008)

  10. Dubuc, S., Merrien, J.-L.: Hermite subdivision schemes and Taylor polynomials. Constr. Approx. 29, 219–245 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hamming, R.W.: Digital filters. Prentice–Hall, 1989 Republished by Dover Publications (1998)

  12. Han, B., Yu, T.P., Piper, B.: Multivariate refinable Hermite interpolant. Math. Comput. 73(248), 1913–1935 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, B., Yu, T.P., Xue, Y.: Noninterpolatory Hermite subdivision schemes. Math. Comput. 74(251), 1345–1367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Juttler, B., Schwanecke, U.: Analysis and Design of Hermite subdivision schemes. Visual Comput. 18, 326–342 (2002)

    Article  Google Scholar 

  15. Levin, A.: Polynomial generation and quasi-interpolation in stationary non-uniform subdivision. Comput. Aided. Geom. Design 20(1), 41–60 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Merrien, J.-L., Sauer, T.: From Hermite to stationary subdivision schemes in one and several variables. Adv. Comput. Math. 36, 547–579 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Micchelli, C.A.: Interpolatory subdivision schemes and wavelets. J. Approx. Theory 86, 41–71 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Romani, L.: A circle-preserving C 2 Hermite interpolatory subdivision scheme with tension control. Comput. Aided. Geom. Des. 27, 36–47

  19. Schwanecke, U., Juttler, B.: B-spline approach to Hermite subdivision. In: Cohen, A., Rabut, C., Schumaker (eds.) Curve and surface fitting, Saint-Malo 1999, 385. Vanderbilt University Press, Nashville, USA (2000)

  20. Uhlmann, V., Delgado-Gonzalo, R., Conti, C., Romani, L., Unser, M.: Exponential Hermite splines for the analysis of biomedical images. Proceedings of IEEE International Conference on Acoustic. Speech and Signal Processing (ICASSP), 1650–1653 (2014)

  21. Unser, M., Blu, T.: Cardinal Exponential Splines: Part I — Theory and Filtering Algorithms. IEEE Trans. Sig. Proc. 53, 1425–1438 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costanza Conti.

Additional information

Communicated by: T. Lyche

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conti, C., Cotronei, M. & Sauer, T. Factorization of Hermite subdivision operators preserving exponentials and polynomials. Adv Comput Math 42, 1055–1079 (2016). https://doi.org/10.1007/s10444-016-9453-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-016-9453-4

Keywords

Mathematics Subject Classification (2010)

Navigation