Skip to main content
Log in

Fern and lycopod spores rain in a cloud forest of Hidalgo, Mexico

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the composition of the “spore rain” of ferns and lycopods in a cloud forest. We tested whether the canopy impedes spore dispersal to surrounding areas and how spore dispersal is affected by rainfall. The spores were captured with a modified Bush–Gosling trap placed at 30 cm above ground level in forested and non-forested sites from March 2009 to February 2010. We collected 2462 fern spores from 158 morphospecies of which 76 were identified to species level. Thirty-seven species were found exclusively in the spore rain, and 39 were found as sporophytes as well (local component). Mean daily spore density (spores m−2) was calculated to find the sporulation period for each species. Twenty species showed seasonal patterns of sporulation. The highest spore density was found at the forested site (70 morphospecies and 1856 spores), of which 39 morphospecies (1482 spores) corresponded to the local vegetation. Fifty-five taxa were shared between the forested and non-forested site. In the non-forested site, 605 spores were captured belonging to 64 species. The density of spore rain between sites was significantly different. The rainfall amount was the same at both sites, with a dry period in March, April, and July 2009, and February 2010. There was a negative effect of rainfall on spore rain. The main sporulation occurred in the dry season with strong winds. Although the canopy inhibits airborne dispersal of fern spores, a small amount of spores can disperse beyond the canopy and reach surrounding areas. The rainfall might wash spores to ground and favor the colonization and the establishment of new populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berglund, B. E. (1973). Pollen dispersal and deposition in an area of southeastern Sweden—Some preliminary results. In H. J. B. Birks & R. G. West (Eds.), Quaternary plant ecology (pp. 117–129). Oxford: Blackwell Scientific.

    Google Scholar 

  • Caulton, E., Keddie, S., Carmichael, R., & Sales, J. (2000). A ten year study of the incidence of spores of bracken, (Pteridium aquilinum (L.) Kuhn.) in an urban rooftop airstream in south east Scotland. Aerobiologia, 16, 29–33.

    Article  Google Scholar 

  • Chen, S.-H., & Huang, T.-C. (1980). Aeropalynological study of Taipei basin, Taiwan. Grana, 19(2), 147–155.

    Article  Google Scholar 

  • Ching, O. T. (2004). Aerobiology, image analysis and allergenicity of pollen and spores in Singapore. Ph.D. thesis. National University Singapore.

  • Chung, M. Y., & Chung, M. G. (2013). Significant spatial aggregation and fine-scale genetic structure in the homosporous fern Cyrtomiun falcatum (Dryopteridaceae). New Phytologist, 199, 663–672.

    Article  CAS  Google Scholar 

  • Cousens, R., Dytham, C., & Law, R. (2008). Dispersal in plants. Oxford, USA: Oxford University Press.

    Book  Google Scholar 

  • Fægri, K., & Iversen, J. (1989). Textbook of pollen analysis (4th ed.). London: Wiley.

    Google Scholar 

  • Filipini-De Giorgi, A., Holderegger, R., & Schneller, J. J. (1997). Aspects of spore dispersal in Selaginella. American Fern Journal, 87(3), 93–103.

    Article  Google Scholar 

  • García, E. (1973). Modificaciones al sistema de clasificación climática de Köppen (2nd ed., p. 246). Instituto de Geografia. UNAM.

    Google Scholar 

  • Gómez-Noguez, F., Pérez-García, B., Mendoza-Ruiz, A., & Orozco-Segovia, A. (2013). Flora palinológica de los helechos y licofitas de Río Malila, Hidalgo, México. Botanical Sciences, 91(2), 135–154.

    Google Scholar 

  • Gómez-Noguez, F., Pérez-García, B., Mendoza-Ruiz, A., & Orozco-Segovia, A. (2014). A pluviometric fern spore, fungal spore and pollen trap. American Fern Journal, 104(1), 1–6.

    Article  Google Scholar 

  • Greer, G. K., Lloyd, R. M., & McCarthy, B. C. (1997). Factors influencing the distribution of pteridophytes in a southeastern Ohio hardwood forest. Journal of the Torrey Botanical Society, 124(1), 11–21.

    Article  Google Scholar 

  • Haratym, W., Weryszko-Chmielewska, E., & Dmitruk, M. (2014). An analysis of the content of pteridophyta spores in aeroplankton of Lublin (2013–2014). Acta Agrobotanica, 67, 21–28.

    Article  Google Scholar 

  • Holttum, R. E. (1938). The ecology of tropical ferns. In F. Verdoorn (Ed.), Manual of pteridology (pp. 420–450). Amsterdam: M. Nijhoff.

    Chapter  Google Scholar 

  • INEGI. (2009). Prontuario de información geográfica municipal de los Estados Unidos Mexicanos, Molango de Escamilla, Hidalgo. http://www.inegi.org.mx/geo/contenidos/recnat/clima/doc/dd_climaticos_1m_250k.pdf. Accesed 2 December 2015

  • Karst, J., Gilbert, B., & Lechowicz, M. J. (2005). Fern community assembly: The roles of chance and the environment at local and intermediate scales. Ecology, 86(9), 2473–2486.

    Article  Google Scholar 

  • Kasprzyk, I. (2004). Airborne pollen of entomophilous plants and spores of pteridophytes in Rzeszów and its environs (SE Poland). Aerobiologia, 20, 217–222.

    Article  Google Scholar 

  • Kessler, M. (2010). Biogeography of ferns. In K. Mehltreter, L. R. Walker, & J. M. Sharpe (Eds.), Fern ecology (pp. 22–60). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Kornás, J. (1977). Life-forms and seasonal patterns in the pteridophytes in Zambia. Acta Societatis Botanicorum Poloniae, 46(4), 669–690.

    Article  Google Scholar 

  • Lacey, M. E., & West, J. S. (2006). The Air spora, a manual for catching and identifying airborne biological particles. Netherlands: Springer.

    Google Scholar 

  • Magurran, A. E. (1988). Ecological diversity and its measurements. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Mehltreter, K. (2008). Phenology and habitat specificity of tropical ferns. In K. Mehltreter, L. R. Walker, & J. M. Sharpe (Eds.), Fern ecology (pp. 201–221). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Mickel, J. T., & Smith, A. R. (2004). The Pteridophytes of Mexico. Memoirs of the New York Botanical Garden, 88, 1–1054.

    Google Scholar 

  • Moran, R. C., & Smith, A. R. (2001). Phytogeographic relationships between neotropical and African-Madagascan pteridophytes. Brittonia, 53(2), 304–351.

    Article  Google Scholar 

  • Nathan, R., Katul, G. G., Horn, H. S., Thomas, S. M., Orem, R., Avissar, R., et al. (2002). Mechanisms of long-distance dispersal of seeds by wind. Nature, 418, 409–413.

    Article  CAS  Google Scholar 

  • Njokuocha, R. C. (2006). Airborne pollen grains in Nsukka, Nigeria. Grana, 45, 73–80.

    Article  Google Scholar 

  • Nobel, P. S. (1978). Microhabitat, water relations, and photosynthesis of a desert fern. Notholaena parryi. Oecologia, 31(3), 293–309.

    Article  Google Scholar 

  • Noblin, X., Rojas, N. O., Westbrook, J., Llorens, C., Argentina, M., & Dumais, J. (2012). The fern sporanguim: A unique catapult. Science,. doi:10.1126/science.1215985.

    Google Scholar 

  • Ong, T. C., Lim, S. H., Chen, X., Dali, S. D. M., Tan, W. T. W., Lee, B. W., & Chew, F. T. (2012). Fern spore and pollen airspora of Singapore. Aerobiologia, 28, 135–151.

    Article  Google Scholar 

  • Page, C. N. (1979). Experimental aspects of fern ecology. In A. F. Dyer (Ed.), The Experimental biology of ferns (pp. 552–589). London: Academic Press.

    Google Scholar 

  • Page, C. N. (2002). Ecological strategies in fern evolution: A neopteridological overview. Review of Palaeobotany and Palynology, 119, 1–33.

    Article  Google Scholar 

  • Pérez-García, B., Mendoza-Ruiz, A., Sánchez-Coronado, M. E., & Orozco-Segovia, A. (2007). Effects of light and temperature on spore germination of spores of four tropical ferns species. Acta Oecologica, 32(172), 179.

    Google Scholar 

  • Poppinga, S., Haushahn, T., Warnke, M., Masselter, T., & Speck, T. (2015). Sporangium exposure and spore release in the peruvian mindehair fern (Adiantum peruvianum, Pteridiaceae). PLoS One,. doi:10.1371/journal.pone.0138495.

    Google Scholar 

  • Prange, R. K. (1980). Responses of the ostrich fern, Matteuccia struthiopteris (L.) Todaro, to lime, soil moisture, and irradiance. Proceedings of the Nova Scotian Institute of Science, 30, 171–181.

    Google Scholar 

  • Ramírez-Trejo, M. R., Pérez-García, B., Orozco-Segovia, A., & Pérez-Salicrup, D. R. (2011). ¿Contribuyen las esporas de Pteridium caudatum a su expansión en la Península de Yucatán?. Resúmenes de Simposios del lII Congreso Mexicano de Ecología. Boca del Río, Veracruz, 3–7 abril, pp. 46.

  • Ranal, M. A. (1995). Estabelecimento de pteridófitas em Mata Mesófila Semidecídua do estado de Sao Paulo. 3. Fenología e sobrevivencia dos individuos. Revista Brasileira de Biologia, 55(4), 777–787.

    Google Scholar 

  • Ranker, T. A., & Geiger, J. M. O. (2008). Population genetics. In T. A. Ranker & C. H. Haufler (Eds.), Biology and evolution of ferns and lycophytes (pp. 107–133). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Raynor, G. S., Hayes, J. V., & Ogden, E. C. (1974). Particulate dispersion into and within a forest. Boundary-Layer Meteorology, 7, 429–456.

    Article  Google Scholar 

  • Rodríguez de la Cruz, D., Sánchez-Reyes, E., & Sánchez-Sánchez, J. (2009). Effects of meteorological factors on airborne braken (Pteridium aquilinum (L.) Kuhn.) spores in Salamanca (middle-west Spain). International Journal of Biometeorology,. doi:10.1007/s00484-009-0208-5.

    Google Scholar 

  • Rodríguez de la Cruz, D., Sánchez-Reyes, E., & Sánchez-Sánchez, J. (2011). Aerobiology of Pteridophyta spores: Preliminary results and applications. In H. Fernández, A. Kumar, & M. A. Revilla (Eds.), Working with ferns, Issues and applications (pp. 271–281). London: Springer.

    Chapter  Google Scholar 

  • Rzedowski, J. (1978). La vegetación de México. México, D.F.: Limusa.

    Google Scholar 

  • Schneller, J. J. (1995). Aspects of spore release of Asplenium rutamuraria with reference to some other woodland ferns: Athyrium filix-femina, Dryopteris filix-mas, and Polystichum aculeatum. Botanica Helvetica, 105, 187–197.

    Google Scholar 

  • Schneller, J. J., Gerber, H., & Zuppiger, A. (2008). Speed and force to spore ejection in Selaginella martensii. Botanica Helvetica, 118, 13–20.

    Article  Google Scholar 

  • Sessa, E. B., Testo, W. L., & Watkins, J. E. (2016). On the widespread capacity for, and functional significance of, extreme inbreeding in ferns. New Phytologist,. doi:10.1111/nph.13985.

    Google Scholar 

  • Sharpe, J. M., & Jernsted, J. A. (1990). Leaf growth and phenology of the dimorphic herbaceous layer fern Danaea wendlandii (Marattiaceae) in a Costa Rica rain forest. American Journal of Botany, 77(8), 1040–1049.

    Article  Google Scholar 

  • Simabukuro, E. A., Esteves, L. M., & Felippe, G. M. (1998a). Fern spore rain at Itirapina (Sp. Brasil): Preliminary results. Ínsula (Florianópolis), 27, 39–57.

    Google Scholar 

  • Simabukuro, E. A., Esteves, L. M., & Felippe, G. M. (1998b). Fern spore morphology and spore rain of a preserved Cerrado region in southeast Brazil (Reserva Biológica e Estacão experimental de Moji Guacu, São Paulo). American Fern Journal, 88(3), 114–137.

    Article  Google Scholar 

  • Simabukuro, E. A., Esteves, L. M., & Felippe, G. M. (2000). Fern spore rain collected at two different heights at Moji Guacu (São Paulo, Brazil). Fern Gazette, 16, 147–166.

    Google Scholar 

  • Smith, A. R., Pryer, K. M., Schuettpelz, E., Korall, P., Schneider, H., & Wolf, P. G. (2006). A classification of extant ferns. Taxon, 55(3), 705–731.

    Article  Google Scholar 

  • Soltis, D. E., Soltis, P. S., & Smith, A. R. (1991). Breeding systems of three tree ferns: Alsophila firma (Cyatheaceae), Cyathea stipularis (Cyatheaceae), and Lophosoria quadripinnata (Lophosoriaceae). Plant Species Biology, 6, 19–25.

    Article  Google Scholar 

  • Sowunmi, M. A. (1979). Palynological studies in the Niger delta. Paleoecology of Africa, 11, 191.

    Google Scholar 

  • Traverse, A. (2007). Paleopalynology. Aims & scope topics in Geobiology book series. Netherlands: Springer.

    Google Scholar 

  • Tryon, R. M. (1970). Development and evolution of fern floras of oceanic islands. Biotropica, 2(2), 76–84.

    Article  Google Scholar 

  • Tuomisto, H., & Paulsen, A. D. (2000). Pteridophyte diversity and species composition in four amazonian rain forests. Journal of Vegetation Science, 11(3), 383–396.

    Article  Google Scholar 

  • Vernon, A. L., & Ranker, T. A. (2013). Current status of fern and lycophytes of the Hawaiian Islands. American Fern Journal, 103(2), 59–111.

    Article  Google Scholar 

  • Webster, T. R. (1995). Demonstrating spore dispersal in the spikemoss, Selaginella martensii. The American Biology Teacher, 57(2), 83–86.

    Article  Google Scholar 

  • Werth, C. R., & Cousens, M. I. (1990). Summary: The contributions of population studies on Ferns. American Fern Journal, 80(4), 183–190.

    Article  Google Scholar 

  • Wild, M., & Gagnon, D. (2005). Does lack of suitable habitat explain the patchy distributions of rare calcicole fern species? Ecography, 28, 191–196.

    Article  Google Scholar 

  • Wiltshire, P. E. J. (2009). Forensic ecology, botany, and palynology: Some aspects of their role in criminal investigation. In K. Ritz, L. Dawson, & D. Miller (Eds.), Criminal and environmental soil forensics (pp. 129–149). Berlin: Springer.

    Chapter  Google Scholar 

  • Winkler, M., Koch, M., & Hietz, P. (2011). High gene flow in epiphytic ferns despite habitat loss and fragmentation. Conservation Genetics, 12, 1411–1420.

    Article  Google Scholar 

  • Xiang, J.-Y., Wen, J., & Peng, H. (2015). Evolution of eastern Asia-North American biogeographic disjunctions in ferns and lycophytes. Journal of Systematics and Evolution, 53, 2–32.

    Article  Google Scholar 

  • Yasmeen, S. J., & Devi, S. (1988). Pteridophyte aerospora of India. Grana, 27(3), 229–238.

    Article  Google Scholar 

Download references

Acknowledgments

This manuscript was done with the data obtained during the development of the first author Master's thesis, and the experience gainied is presented as part of his academic training as a Doctoral Student (Ph.D.) Biological and Health Sciences program of the Autonomous Metropolitan University. The first author thanks the Universidad Autónoma Metropolitana-Iztapalapa for its support in the development of this research, Dra. Blanca Pérez-García for the supervision of the project, and the Consejo Nacional de Ciencia y Tecnología (CONACyT) for the fellowship 224680. The authors thank for valuable comments of Rosa Cerros Tlatilpa, Michael Sundue, Robbin Moran, and Klaus Mehltreter who reviewed the manuscript, Karla Castillo Espinoza, César Valdovinos Flores, Ricardo Valdez Ávila, Griselda García Rivera, Rafael Trigueros G., and Iván Gómez J., who helped during sampling, UAMIZ herbarium curator Ana Rosa López Ferrari who provided samples for identification of alien species, and Ivonne Nayeli Gómez Escamilla for the elaboration of the map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Gómez-Noguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Noguez, F., Pérez-García, B., Mendoza-Ruiz, A. et al. Fern and lycopod spores rain in a cloud forest of Hidalgo, Mexico. Aerobiologia 33, 23–35 (2017). https://doi.org/10.1007/s10453-016-9447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-016-9447-1

Keywords

Navigation