Skip to main content
Log in

A novel time-based low-power pipeline analog to digital converter

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A new power reduction technique for analog-to-digital converters is proposed in this paper. A novel current-mode algorithm which uses time to perform analog-to-digital conversion has been described and a 12 bit 100-ksample/s time-based pipeline analog to digital converter has been designed and simulated in standard 90-nm CMOS technology based on introduced structure. Employed circuit techniques include a continues-time comparator, bottom plate sampling, digital correction and a state machine. A time based-mechanism has been used for subtraction and amplification. Simulation results show that the pipelined ADC achieves a peak signal-to-noise-and-distortion ratio of 69.8 dB, a peak spurious-free dynamic range of 75 dB, a total harmonic distortion of 73 dB, and a peak integral nonlinearity of 0.85 least significant bits. The total power dissipation is 90 μW from a 3-V supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Chae, M., Liu, W., Yang, Z., Chen, T., Kim, J., Sivaprakasam, M., & Yuce, M. (2008). A 128-channel 6 mW wireless neural recording IC with on-the-fly spike sorting and UWB transmitter. In IEEE international solid-state circuits conference.

  2. Harrison, R. R., Watkins, P. T., Kier, R. J., Lovejoy, R. O., Black, D. J., Greger, B., et al. (2007). A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE Journal of Solid-State Circuits, 42(1), 123–133.

    Article  Google Scholar 

  3. Farshchi, S., Markovic, D., Pamarti, S., Razavi, B., & Judy, J. W. (2007). Towards neuromote: A single-chip, 100-channel, neural-signal acquisition, processing, and telemetry device. In 29th IEEE engineering in medicine and biology conference.

  4. Olsson, R. H., III, & Wise, K. D. (2005). A three-dimensional neural recording microsystem with implantable data compression circuitry. IEEE Journal of Solid-State Circuits, 40(12), 2796–2804.

    Article  Google Scholar 

  5. Zarifi, M. H., Frounchi, J., Farshchi, S., & Judy, J. W. (2008). A low-power, low-noise neural-signal amplifier circuit in 90-nm CMOS. In Proceedings of the 30th IEEE engineering in medicine and biology conference.

  6. Rostami, A., Zarifi, M. H., KuzeKanani, Z. D., & Sobhi, J. (2007). A 12 bit, 80 Msamples/s, pipeline analog to digital converter. In Proceeding of 5th international conference on electrical and electronics engineering, Bursa, Turkey.

  7. Grace, C. R., Hurst, P. J., & Lewis, S. H. (2005). A 12-bit, 80-Msample/s pipeline analog to digital converter with bootstrapped digital calibration. IEEE Journal of Solid-State Circuits, 40(5), 1038–1046.

    Article  Google Scholar 

  8. Scott, M. D., Boser, B. E., & Pister, K. S. J. (2003). An ultra low-energy ADC for smart dust. IEEE Journal of Solid-State Circuits, 38(7), 1123–1129.

    Article  Google Scholar 

  9. Uyttenhove, K., & Steyaert, M. S. J. (2003). A 1.8-V 6-bit 1.3-GHz flash ADC in 0.25-μm CMOS. IEEE Journal of Solid-State Circuits, 38(7), 1115–1122.

    Article  Google Scholar 

  10. Li, Y., & Sanchez-Sinencio, E. (2003). A wide input bandwidth 7-bit 300-Msample/s folding and current-mode interpolating ADC. IEEE Journal of Solid-State Circuits, 38(8), 1405–1410.

    Article  Google Scholar 

  11. Gupta, S. K., & Fong, V. (2002). A 64-MHz clock-rate Σ∆ ADC with 88-dB SNDR and -105-dB IM3 distortion at a 1.5-MHz signal frequency. IEEE Journal of Solid-State Circuits, 37(12), 1653–1661.

    Article  Google Scholar 

  12. Abo, A. M. (1999). Design for reliability of low-voltage, switched-capacitor circuits, Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Berkeley, California, spring.

  13. Cline, D. W., & Gray, P. R. (1996). A power optimized 13-b 5 Msamples/s pipelined analog-to-digital converter in 1.2 μm CMOS. IEEE Journal of Solid-State Circuits, 31(3), 294–303.

    Article  Google Scholar 

  14. Lo, T. Y., & Hung, C. C. (2007). A wide tuning range Gm–C continuous-time analog filter. IEEE Transactions on Circuit and Systems—I: Regular Papers, 54(4), 713–722.

    Article  Google Scholar 

  15. Yang, H. Y., & Sarpeshkar, R. (2005). A time-based energy-efficient analog-to-digital converter. IEEE Journal of Solid-State Circuits, 40(8), 1590–1601.

    Article  Google Scholar 

  16. Yao, L., Steyaert, M., & Sansen, W. (2004). A 1-V 88-dB 20-kHz Σ∆ modulator in 90-nm CMOS. Digital Technique Papers ISSCC, 12, 80–514.

    Google Scholar 

  17. Sauerbrey, J., Schmitt-Landsiedel, D., & Thewes, R. (2003). A 0.5-V 1-W successive approximation ADC. IEEE Journal of Solid-State Circuits, 38(7), 1261–1265.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Zarifi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarifi, M.H., Frounchi, J., Farshchi, S. et al. A novel time-based low-power pipeline analog to digital converter. Analog Integr Circ Sig Process 62, 281–289 (2010). https://doi.org/10.1007/s10470-009-9346-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9346-2

Keywords

Navigation