Skip to main content
Log in

FPGA implementation of high-speed neural network for power amplifier behavioral modeling

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a high-speed pipelined architecture of dynamic neural network is proposed for power amplifier behavioral modeling. This architecture is implemented on field programmable gate array (FPGA) using Xilinx system generator and Virtex-6 FPGA ML605 Evaluation Kit. The novelty of the proposed architecture is that it provides higher operating frequency, lower output latency, and less required resources. These improvements are obtained by reducing the bit-width data and by efficiently redistributing the inserted pipelining delays. The new pipelined architecture is evaluated and compared to the conventional and pseudo-conventional ones in terms of the resource utilization, the maximum operating frequency, and the modeling performances using the 16-QAM modeled test signal. This architecture is verified using JTAG hardware co-simulation both for single step and free-running clock modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Liu, T., Boumaiza, S., Ghannouchi, F. M. (2004). Dynamic behavioral modeling of 3G power amplifiers using real-valued time-delay neural networks. IEEE Transactions on Microwave Theory and Techniques, 52(3), 1025–1033.

    Article  Google Scholar 

  2. Hwangbo, H., Jung, S. C., Yang, Y., Park, C. S., Kim, B. S., Nah, W. (2006). Power amplifier linearization using an indirect-learning-based inverse TDNN model. Microwave Journal, 49(11), 76–88.

    Google Scholar 

  3. Cao, Y., Chen, X., Wang, G. (2009). Dynamic behavioral modeling of nonlinear microwave devices using real-time recurrent neural network. IEEE Transactions on Electron Devices, 56(5), 1020–1026.

    Article  Google Scholar 

  4. Rawat, M., Rawat, K., Ghannouchi, F. M. (2010). Adaptive digital predistortion of wireless power amplifiers/transmitters using dynamic real-valued focused time-delay line neural networks. IEEE Transactions on Microwave Theory and Techniques, 58(1), 95–104.

    Article  Google Scholar 

  5. Mkadem, F., Boumaiza, S. (2011). Physically inspired neural network model for RF power amplifier behavioral modeling and digital predistortion. IEEE Transactions on Microwave Theory and Techniques, 59(4), 913–923.

    Article  Google Scholar 

  6. Hui, M., Liu, T., Ye, Y., Zhang, H., Shen, D., Li, L. (2012). Dynamic behavioral modeling for strongly nonlinear Doherty PAs using real-valued time-delay recurrent RBF model. Journal of Electronics (China) ,29(1–2), 39–45.

    Article  Google Scholar 

  7. Bahoura, M., Park, C.-W. (2012). FPGA-implementation of dynamic time delay neural network for power amplifier behavioral modeling. Analog Integrated Circuits and Signal Processing, 73(3), 819–828.

    Article  Google Scholar 

  8. Ntouné, R. S. N., Bahoura, M., Park, C.-W. (2012). FPGA-implementation of pipelined neural network for power amplifier modeling. In:The 10th IEEE International NEWCAS Conference, Montréal, Canada (pp. 109–112).

  9. Dias, F. M., Antunes, A., Mota, A. M. (2004). Artificial neural networks: A review of commercial hardware. Engineering Applications of Artificial Intelligence, 17(8), 945–952.

    Article  Google Scholar 

  10. Misra, J., Saha, I. (2010). Artificial neural networks in hardware: A survey of two decades of progress. Neurocomputing ,74, 239–255.

    Article  Google Scholar 

  11. Gironés, R. G., Palero, R. C., Boluda, J. C., Cortés, A. S. (2005). FPGA implementation of a pipelined on-line backpropagation. Journal of VLSI Signal Processing Systems, 40, 189–213.

    Google Scholar 

  12. Ortigosa, E. M., Cañas, A., Ros, E., Ortigosa, P. M., Mota, S., Díaz, J. (2006). Hardware description of multi-layer perceptrons with different abstraction levels. Microprocessors and Microsystems, 30(7), 435–444.

    Article  Google Scholar 

  13. Armato, A., Fanucci, L., Scilingo, E., Rossi, D. D. (2011). Low-error digital hardware implementation of artificial neuron activation functions and their derivative. Microprocessors and Microsystems, 35(6), 557–567.

    Article  Google Scholar 

  14. Gilabert, P., Cesari, A., Montoro, G., Bertran, E., Dilhac, J.-M. (2008). Multi-lookup table FPGA implementation of an adaptive digital predistorter for linearizing RF power amplifiers with memory effects. IEEE Transactions on Microwave Theory and Techniques, 56(2), 372–384.

    Article  Google Scholar 

  15. Kwan, A., Ghannouchi, F., Hammi, O., Helaoui, M., Smith, M. (2012). Look-up table-based digital predistorter implementation for field programmable gate arrays using long-term evolution signals with 60 MHz bandwidth. Science, Measurement Technology, IET, 6(3), 181–188.

    Article  Google Scholar 

  16. Gilabert, P. L., Montoro, G. (2013). Computationally efficient real-time digital predistortion architectures for envelope tracking power amplifiers. International Journal of Microwave and Wireless Technologies, 5, 187–193.

    Article  Google Scholar 

  17. Ku, H., Kenney, J. S. (2003). Behavioral modeling of nonlinear RF power amplifiers considering memory effects. IEEE Transactions on Microwave Theory and Techniques, 51(12), 2495–2504.

    Article  Google Scholar 

  18. Ding, L., Zhou, G. T., Morgan, D. R., Ma, Z., Kenney, J. S., Kim, J., Giardina, C. R. (2004). A robust digital baseband predistorter constructed using memory polynomials. IEEE Transactions on Communications, 52(1), 159–165.

    Article  Google Scholar 

  19. Mrabet, N., Mohammad, I., Mkadem, F., Rebai, C., Boumaiza, S. (2012). Optimized hardware for polynomial digital predistortion system implementation. In: 2012 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR).

  20. Guan, L., Zhu, A. (2010). Low-cost FPGA implementation of Volterra series-based digital Predistorter for RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 58(4), 866–872.

    Article  MathSciNet  Google Scholar 

  21. Zhu, A., Pedro, J., Brazil, T. (2006). Dynamic deviation reduction-based Volterra behavioral modeling of RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 54(12), 4323–4332.

    Article  Google Scholar 

  22. Liszewski, J., Schubert, B., Keusgen, W., Kortke, A. (2011). Low-complexity FPGA implementation of Volterra predistorters for power amplifiers. In: The IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR) (pp. 41–44).

  23. Jiménez, V., Jabrane, Y., Armada, A., Said, B., Ouahman, A. (2011). High power amplifier pre-distorter based on neural-fuzzy systems for OFDM signals. IEEE Transactions on Broadcasting, 57(1), 149–158.

    Article  Google Scholar 

  24. Kwan, A., Helaoui, M., Boumaiza, S., Smith, M., Ghannouchi, F. (2009). Wireless communications transmitter performance enhancement using advanced signal processing algorithms running in a hybrid DSP/FPGA platform. Journal of Signal Processing Systems, 56(2–3), 187–198.

    Article  Google Scholar 

  25. Haykin, S. (1999). Neural networks: A comprehensive foundation (2nd ed.). Upper Saddle River: Prentice-Hall.

    MATH  Google Scholar 

  26. Bahoura, M., Ezzaidi, H. (2011). FPGA-implementation of parallel and sequential architectures for adaptive noise cancelation. Circuits, Systems, and Signal Processing, 30(6), 1521–1548.

    Article  Google Scholar 

  27. Bahoura, M., Park, C.-W. (2011). FPGA-implementation of high-speed MLP neural network. In: The 18th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), Beirut, Lebanon (pp. 426–429).

  28. Bahoura, M., Ezzaidi, H. (2012). FPGA-implementation of discrete wavelet transform with application to signal denoising. Systems, and Signal Processing, 31(3), 987–1015.

    Article  MATH  MathSciNet  Google Scholar 

  29. Long, G., Ling, F., Proakis, J. (1989). LMS algorithm with delayed coefficient adaptation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(9), 1397–1405.

    Article  MATH  Google Scholar 

  30. Saleh, A. A. M. (1981). Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers. IEEE Transactions on communications, 29(11), 1715–1720.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Bahoura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahoura, M. FPGA implementation of high-speed neural network for power amplifier behavioral modeling. Analog Integr Circ Sig Process 79, 507–527 (2014). https://doi.org/10.1007/s10470-014-0263-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0263-7

Keywords

Navigation