Skip to main content
Log in

Programmable discrete-time type I and type II FIR filter design on the memristor crossbar structure

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A new method for effective realization of discrete-time type I and type II FIR filters on the memristor crossbar structure is developed in this paper. For this purpose, first the analog input signal (to be filtered using the discrete-time filter) is discretized using the classical switched-capacitor circuit and then all of the required delayed samples of this discrete-time signal are generated using the circuit designed for this purpose. Next, the weighted sum of these delayed samples of the original discrete-time signal (which forms the output of the FIR filter under consideration) is produced using the memristor crossbar structure. The proposed structure for FIR filter design is, compared to classical methods, advantageous in the way that it does not need any processors or A/D converter. Moreover, it is fully implemented using analog devices and consequently free of round-off error. Another related contribution of this paper is the circuit proposed for automatic tuning the memristance of the given memristor to the desired value with a high accuracy. Four numerical examples, including the application of the proposed FIR filter for demodulation of AM signals, are studied and HSPICE simulations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chua, L. O. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.

    Article  Google Scholar 

  2. Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.

    Article  Google Scholar 

  3. Pershin, Y. V., La Fontaine, S., & Di Ventra, M. (2009). Memristive model of amoeba’s learning. Physical Review E, 80(2), 021926.

    Article  Google Scholar 

  4. Merrikh-Bayat, F., Merrikh-Bayat, F., & Bagheri-Shouraki, S. (2013). Neuro-fuzzy computing system with the capacity of implementation on memristor-crossbar and optimization-free hardware training. IEEE Transactions on Fuzzy Systems,. doi:10.1109/TFUZZ.2013.2290140.

    Google Scholar 

  5. Pershin, Y. V., & Ventra, M. D. (2010). Practical approach to programmable analog circuits with memristors. IEEE Transactions on Circuits and Systems I, 57(8), 1857–1864.

    Article  MathSciNet  Google Scholar 

  6. Merrikh-Bayat, F., & Shouraki, S. B. (2011). Memristor-based circuits for performing basic arithmetic operations. Procedia Computer Science, 3, 128–132.

    Article  Google Scholar 

  7. Shin, S., Kim, K., & Kang, S.-M. S. (2011). Memristor applications for programmable analog ICs. IEEE Transactions on Nanotechnology, 10(2), 266–274.

    Article  Google Scholar 

  8. Merrikh-Bayat, F., & Shouraki, S. B. (2011). Memristor crossbar-based hardware implementation of IDS method. IEEE Transaction on Fuzzy Systems, 19(6), 1083–1096.

    Article  Google Scholar 

  9. Kuekes, P. (2008, November 21). Material implication: Digital logic with memristors. In: Proceedings of the First Memristor and Memristive Systems Symposium, UC Berkeley.

  10. Cohen, G. Z., Pershin, Y. V., & Di Ventra, M. (2012). Second and higher harmonics generation with memristive systems. Applied Physics Letters, 100, 133109.

    Article  Google Scholar 

  11. Mouttet, B. L. (2008, September 14–16). Proposal for memristors in signal processing. In: Proceedings of the Third International ICST Conference, NanoNet 2008, Boston, MS, USA (vol. 3, pp. 11–13).

  12. Merrikh-Bayat, F., & Shouraki, S. B. (2011). Mixed analog-digital crossbar-based hardware implementation of sign–sign LMS adaptive filter. Analog Integrated Circuits and Signal Processing, 3(1), 41–48.

    Article  Google Scholar 

  13. Zhao, Y.-B., Tse, C.-K., Feng, J.-C., & Guo, Y.-C. (2013). Application of memristor-based controller for loop filter design in charge-pump phase-locked loops. Circuits, Systems, and Signal Processing, 32(3), 1013–1023.

    Article  MathSciNet  Google Scholar 

  14. Merrikh-Bayat, F., Shouraki, S. B., & Merrikh-Bayat, F. (2011). Memristive fuzzy edge detector. Journal of Real-Time Image Processing,. doi:10.1007/s11554-012-0254-9.

    Google Scholar 

  15. Itoh, M., & Chua, L. O. (2008). Memristor oscillators. International Journal of Bifurcation and Chaos, 18(11), 3183–3206.

    Article  MATH  MathSciNet  Google Scholar 

  16. Ho, Y., Huang, G. M., & Li, P. (2009, November 2–5). Nonvolatile memristor memory: Device characteristics and design implications. In: IEEE/ACM International Conference on Computer-Aided Design—Digest of Technical Papers. San Jose, CA (pp. 485–490).

  17. Williams, R. (2008). How we found the missing memristor. IEEE Spectrum, 45(12), 28–35.

    Article  Google Scholar 

  18. Jo, S. H., Kim, K.-H., & Lu, W. (2009). High-density crossbar arrays based on a Si memristive system. Nano Letters, 9(2), 870–874.

    Article  Google Scholar 

  19. Oppenheim, A. V., & Schafer, R. W. (2009). Discrete-time signal processing (3rd ed.). Englewood Cliffs: Prentice Hall Signal Processing. 2009.

    Google Scholar 

  20. Kirilov, S., Yordanov, R., & Mladenov, V. (2013). Analysis and synthesis of band-pass and notch memristor filters. In: Proceedings of the 17th WSEAS International Conference on CIRCUITS (part of CSCC ‘13), Greece.

  21. Driscoll, T., Quinn, J., Klein, S., Kim, H. T., Kim, B. J., Pershin, Y. V., et al. (2010). Memristive adaptive filters. Applied Physics Letters, 97(9), 093502.

    Article  Google Scholar 

  22. Chew, Z. J., & Li, L. (2012). Printed circuit board based memristor in adaptive lowpass filter. Electronics Letters, 48(25), 1610–1611.

    Article  Google Scholar 

  23. Xiao-Bo, T., & Hui, X. (2013). The design and simulation of a titanium oxide memristor-based programmable analog filter in a simulation program with integrated circuit emphasis. Chinese Physics B, 22(8), 088501.

    Article  Google Scholar 

  24. Ascoli, A., Tetzlaff, R., Corinto, F., Mirchev, M., & Gilli, M. (2013, April 3–5). Memristor-based filtering applications. In: Proceedings of the 14th Latin American Test Workshop (LATW), Cordoba (pp. 1–6).

  25. Jameel, S., Korasli, C., & Nacaroglu, A. (2013, May 9–11). Realization of biquadratic filter by using memristor. In: Proceedings of the International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), Konya, Turkey.

  26. Di Ventra, M., Pershin, Y. V., & Chua, L. O. (2009). Circuit elements with memory: memristors, memcapacitors, and meminductors. Proceedings of the IEEE, 97(10), 1717–1724.

    Article  Google Scholar 

  27. Alibart, F., Gao, L., Hoskins, B., & Strukov, D. B. (2012). High-precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology, 23, 075201.

    Article  Google Scholar 

  28. Merrikh-Bayat, F., Merrikh-Bayat, F., & Mirebrahimi, N. (2012, December 18–20). A method for automatic tuning the memristance of memristive devices with the capacity of applying to memristive memories. In: Proceedings of the IEEE International Conference on Computer Systems and Industrial Informatics, Sharjah, UAE.

  29. Merrikh-Bayat, F., Mirebrahimi, N., & Merrikh-Bayat, F. (2013). Circuit proposition for copying the value of a resistor into a memristive device supported by HSPICE simulation. Journal of Emerging Trends in Computing and Information Sciences (Special Issue ICCSII), 4, 31–37.

    Google Scholar 

  30. Biolek, D., Biolek, Z., & Biolkova, V. (2009). SPICE modeling of memristive, memcapacitative and meminductive systems. In: Proceedings of the European Conference on Circuit Theory and Design (ECCTD), Antalya, Turkey (pp. 249–252).

  31. Batas, D., & Fiedler, H. (2011). A memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Transactions on Nanotechnology, 10(2), 250–255.

    Article  Google Scholar 

  32. Zaplatilek, K. (2011, April 28–30). Memristor modeling in MATLAB & Simulink. In: Proceedings of the 5th European computing conference (ECC’11), Paris, France (pp. 62–67).

  33. Mahvash, M., & Parker, A. C. A (2010, August 1–4). Memristor SPICE model for designing memristor circuits. In: Proceedings of the 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Seattle, WA (pp. 989–992).

  34. Kariaki, S., Viswanathan, L., Feygin, G., Staszewski, B., Pierson, R., Krenik, B., et al. (1997). A 160-MHz analog equalizer for magnetic disk read channels. IEEE Journal of Solid-State Circuits, 32(11), 1839–1850.

    Article  Google Scholar 

  35. Wang, X., & Spencer, R. R. (1998). A low-power 170-MHz discrete-time analog FIR filter. IEEE Journal of Solid-State Circuits, 33(3), 417–426.

    Article  Google Scholar 

  36. Lee, Y.-S., & Martin, K. W. (1988). A switched-capacitor realization of multiple FIR filters on a single chip. IEEE Journal of Solid-State Circuits, 23(2), 536–542.

    Article  Google Scholar 

  37. Razavi, B. (2000). Design of analog CMOS integrated circuits. Los Angeles: McGraw-Hill Science/Engineering/Math.

    Google Scholar 

  38. Slotine, J. E., & Li, W. (1991). Applied nonlinear control. Englewood Cliffs: Prentice Hall.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Merrikh-Bayat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirebrahimi, SN., Merrikh-Bayat, F. Programmable discrete-time type I and type II FIR filter design on the memristor crossbar structure. Analog Integr Circ Sig Process 79, 529–541 (2014). https://doi.org/10.1007/s10470-014-0275-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0275-3

Keywords

Navigation