Skip to main content
Log in

Simulation and experiment investigation on structural design and reinforcement of pyrotechnical sliding micro-actuators

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Based on the performance requirements of safety and arming devices in a micro-electro-mechanical fuse system, a type of pyrotechnical sliding micro-actuators were independently developed and modified for use in fuse arming devices of small caliber ammunition, independent of the ammunition launching environment. The modified type of actuator—a sliding micro-actuator with two restraining fins—can effectively reduce the required actuated fuel (initiating explosive) and increase the locking force. Experimental results of thrust tests, locking tests and critical fuel weight tests indicate the reliability of the modified structure, and clarify the structural dimension effect. Both the thrust force and slider deformation for the modified structure shared similar results in simulations and tests. In conclusion, the simply and easily fabricated pyrotechnical sliding micro-actuator with a step structure is able to ultimately perform both the anticipated braking and locking functions, and provides references for the structural design of fuse arming devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Palacin, J., Salleras, M., Puig, M., Samitier, J., & Marco, S. (2004). Evolutionary algorithms for compact thermal modelling of microsystems: Application to a micro-pyrotechnic actuator. Journal of Micromechanics and Microengineering, 14(7), 1074–1082.

    Article  Google Scholar 

  2. Paul, B. H., & Gonthier, K. A. (2010). Analysis of gas-dynamic effects in explosively actuated valves. Journal of Propulsion and Power, 26(3), 479–496.

    Article  Google Scholar 

  3. Rossi, C., Esteve, D., & Mingues, C. (1999). Pyrotechnic actuator: A new generation of Si integrated actuator. Sensors and Actuators A, 74(1–3), 211–215.

    Article  Google Scholar 

  4. Rossi, C., Esteve, D., Temple-Boyer, P., & Delannoy, G. (1998). Realization, characterization of micro pyrotechnic actuators and FEM modelling of the combustion ignition. Sensors and Actuators A, 70(1–2), 141–147.

    Article  Google Scholar 

  5. Zhang, Y., Zhang, W., Yang, A., Yang, S., & Gao, F. (2012). Safety discussion and precaution measures about laser beam welding of pyrotechnic actuator. In 8th International symposium on safety science and technology (ISSST), Nanjing, China, pp. 562–566.

  6. Lee, H. S. (2004). Unsteady gasdynamics effects in pyrotechnic actuators. Journal of Spacecraft and Rockets, 41(5), 877–886.

    Article  Google Scholar 

  7. Norton, A. A., & Minor, M. A. (2006). Pneumatic microactuator powered by the deflagration of sodium azide. Journal of Microelectromechanical Systems, 15(2), 344–354.

    Article  Google Scholar 

  8. Briand, D., Dubois, P., Bonjour, L. E., Guillot, L., & Bley, U. (2008). Large deformation balloon micro-actuator based on pyrotechnics on chip. In 21th IEEE international conference on micro electro mechanical systems (MEMS 2008), New York, pp. 535–538.

  9. Koninck de, D. A., Lopez, F. M., & Briand, D. (2012): Foil-level fabrication of inkjet-printed pyroMEMS balloon actuators. In 25th IEEE international conference on micro electro mechanical systems (MEMS 2012), Paris, pp. 64–67.

  10. Koninck de, D. A., Lopez, F. M., Briand, D., & de Rooij, N. F. (2014). Foil-level inkjet-printed pyroMEMS balloon actuators: Fabrication, modeling, and validation. Journal of Microelectromechanical Systems, 23(6), 1417–1427.

    Article  Google Scholar 

  11. Gonthier, K. A., & Powers, J. M. (1994). Formulation, predictions, and sensitivity analysis of a pyrotechnically actuated pin puller model. Journal of Propulsion and Power, 10(4), 501–507.

    Article  Google Scholar 

  12. Jang, S. G., Lee, H. N., & Oh, J. Y. (2014). Performance, modeling of a pyrotechnically actuated pin puller. International Journal of Aeronautical and Space Science, 15(1), 102–111.

    Article  Google Scholar 

  13. Voicu, R. C., & Muller, R. (2014). Design and FEM analysis of a new micromachined electro-thermally actuated micromanipulator. Analog Integrated Circuits and Signal Processing, 78(2), 313–321.

    Article  Google Scholar 

  14. Saheb, J. F., Richard, J. F., Sawan, M., Meingan, R., & Savaria, Y. (2007). System integration of high voltage electrostatic MEMS actuators. Analog Integrated Circuits and Signal Processing, 53(1), 27–34.

    Article  Google Scholar 

  15. Fernandez, D., Madrenas, J., Domminguez, M., Pons, J., & Ricart, J. (2008). Pulse drive and capacitance measurement circuit for MEMS electrostatic actuators. Analog Integrated Circuits and Signal Processing, 57(3), 225–232.

    Article  Google Scholar 

  16. Pennarun, P., Rossi, C., Esteve, D., & Bourrier, D. (2006). Design, fabrication and characterization of a MEMS safe pyrotechnical igniter integrating arming, disarming and sterilization functions. Journal of Micromechanics and Microengineering, 16(1), 92–100.

    Article  Google Scholar 

  17. Pezous, H., Rossi, C., Sanchez, M., Mathieu, F., Dollat, X., Charlot, S., et al. (2010). Integration of a MEMS based safe arm and fire device. Sensors and Actuators A, 159(2), 157–167.

    Article  Google Scholar 

  18. Pezous, H., Rossi, C., Sanchez, M., Mathieu, F., Dollat, X., Charlot, S., et al. (2010). Fabrication, assembly and tests of a MEMS-based safe, arm and fire device. Journal of Physics and Chemistry of Solids, 71(2), 75–79.

    Article  Google Scholar 

  19. Hodge, K. F., Lewis, D. H., Nelson, S. D., & Ruwe, V. W. (2002). MEMS arm fire and safe and arm devices. US Patent number 6,431,071.

  20. Robinson, C. H., Wood, R. H., & Hoang, T. Q. (2005). Miniature MEMS-based electro-mechanical safety and arming device. US Patent number 6,964,231.

  21. Robinson, C. H., Wood, R. H., Gelak, M. R., & Hollingsworth, D. (2006). Micro-scale firetrain for ultra-miniature electro-mechanical safety and arming device. US Patent number 7,055,437.

  22. Maurer, W. H., Soto, G., & Hollingsworth, D. R. (2006). MEMS Safe Arm device for microdetonation. US Patent number 7,040,234.

  23. Worthington, M. (2007). Safety and arming apparatus and method for a munition. US Patent number 7,258,068.

  24. Cooper, P. W., & Kurowski, S. R. (1996). Introduction to the technology of explosives. New York: Wiley.

    Google Scholar 

  25. Frolov, Y., Pivkina, A., & Ivanov, D. (2007). Selection and testing of thermite compositions for pyrotechnic devices. In 7th international fall seminar on propellants, explosives and pyrotechnics, Xi’an, China, pp. 301–311.

  26. Alawadhi, E. M. (2012). Finite element simulations using ANSYS. Florida: Chemical Rubber Company Press Incorporated.

    MATH  Google Scholar 

  27. Dai, L. H., Yan, M., & Shen, L. T. (2004). Shear strength measurements in LY-12 aluminium alloy during shock loading. Chinese Physics Letters, 21(4), 707–708.

    Article  Google Scholar 

  28. Mi, S. S., Zhang, X. E., & Han, C. (2005). Finite element analysis of cubic fragment penetrating LY-12 aluminum alloy target. In 6th international symposium on test and measurement (ISTM 2005), Dalian, China, pp. 8941–8944.

  29. Bell, D. J., Lu, T. J., & Fleck, N. A. (2005). MEMS actuators and sensors: Observations on their performance and selection for purpose. Journal of Micromechanics and Microengineering, 15(7), 153–164.

    Article  Google Scholar 

  30. Li, Y. D., Lee, K. Y., & Zhang, N. (2012). A generalized hypergeometric function method for axisymmetric vibration analysis of a piezoelectric actuator. European Journal of Mechanics-A/Solids, 31(1), 110–116.

    Article  MathSciNet  MATH  Google Scholar 

  31. Khdeir, A. A., & Aldraihem, O. J. (2013). Analytical investigation of laminated arches with extension and shear piezoelectric actuators. European Journal of Mechanics-A/Solids, 37, 285–292.

    Article  MathSciNet  Google Scholar 

  32. Jani, J. M., Leary, M., Subic, A., & Gibson, M. A. (2014). A review of shape memory alloy research, applications and opportunities. Materials and Design, 56, 1078–1113.

    Article  Google Scholar 

  33. Fortini, A., Suman, A., Merlin, M., & Garagnani, G. L. (2015). Morphing blades with embedded SMA strips: An experimental investigation. Materials and Design, 85, 785–795.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, B., Yan, N., Geng, W. et al. Simulation and experiment investigation on structural design and reinforcement of pyrotechnical sliding micro-actuators. Analog Integr Circ Sig Process 88, 431–441 (2016). https://doi.org/10.1007/s10470-016-0783-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0783-4

Keywords

Navigation