Skip to main content
Log in

An investigation on neuron–astrocyte interaction system: network behavior and synchronization

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Astrocytes, also described as astroglia, are characteristic star-shaped glial cells in the brain. The important roles of astrocyte such as extracellular regulation, synaptic information regulation, neuronal synchronization and feedback to neural activity, makes the astrocytes play a vital role in the brain disease. This paper investigates the neuron–astrocyte interaction system for evaluating the network behaviors. In this approach, two basic systems are presented for considering the astrocyte controlling effects on desynchronization of the neurons spiking activity. Simulation results proved that by proper selection of the astrocyte coupling parameters in the proposed network, the networking behaviors can be modulated. As a result, when these coupling parameters have suitable values, the neurons behavior in the sample system will be controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Haghiri, S., Ahmadi, A., & Saif, M. (2017). Complete neuron–astrocyte interaction model: digital multiplierless design and networking mechanism. IEEE Transactions on Biomedical Circuits and Systems, 11(1), 117–127.

    Article  Google Scholar 

  2. Haghiri, S., Ahmadi, A., & Saif, M. (2016). VLSI implementable neuron–astrocyte control mechanism. Neurocomputing, 214, 280–296.

    Article  Google Scholar 

  3. Haghiri, S., & Ahmadi, A. (2020). Digital FPGA implementation of spontaneous astrocyte signalling. International Journal of Circuit Theory and Applications,. https://doi.org/10.1002/cta.2745.

    Article  Google Scholar 

  4. Haghiri, S., Ahmadi, A., Nouri, M., & Hiedarpur, M. (2014). An investigation on neuroglial Interaction effect on Izhikevich neuron behaviour. In 22nd Iranian Conference on Electrical Engineering (ICEE), pp. 88–92.

  5. Oberheim, N. A., Wang, X., Goldman, S., & Nedergaard, M. (2006). Astrocytic complexity distinguishes the human brain. Trends Neuroscience, 29(10), 547553.

    Article  Google Scholar 

  6. Angulo, M. C., Kozlov, A., Charpak, S., & Audinat, E. (2004). Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. Journal of Neuroscience, 24(31), 6920–6927.

    Article  Google Scholar 

  7. Hayati, M., Nouri, M., Haghiri, S., & Abbott. D. (2015). A digital realization of astrocyte and neural glial interactions. http://doi.org/10.1109/TBCAS.2015.2450837.

  8. Nazari, S., Faez, K., Karami, E., & Amiri, M. (2014). A digital neurmorphic circuit for a simplified model of astrocyte dynamics. Neuroscience Letters, 582, 21–26.

    Article  Google Scholar 

  9. Nazari, S., Amiri, M., Faez, K., & Amiri, M. (2015). Multiplier-less digital implementation of neuron–astrocyte signalling on FPGA. Neurocomputing.

  10. Nazari, S., Faez, K., Amiri, M., & Karami, E. (2015). A digital implementation of neuron–astrocyte interaction for neuromorphic applications. Neural Networks, 66, 79–90.

    Article  Google Scholar 

  11. Postnov, D. E., Ryazanov, L. S., & Sosnovtsev, O. V. (2007). Functional modeling of neural-glial interaction. BioSystems, 89, 8491.

    Article  Google Scholar 

  12. Nadkarni, S., & Jung, P. (2004). Dressed neurons: Modeling neural-glial interactions. Physics Biology, 1(1–2), 35–41.

    Article  Google Scholar 

  13. Postnov, D. E., Koreshkov, R. N., Brazhe, N. A., Brazhe, A. R., & Sosnovtseva, O. V. (2009). Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks. Journal of Biological Physics, 35, 425–445.

    Article  Google Scholar 

  14. Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions of Neural Network, 14(6), 1569–1572.

    Article  MathSciNet  Google Scholar 

  15. Izhikevich, E. M. (2006). Dynamical systems in neuroscience: The geometry of excitability and bursting. Computational neuroscience. Cam-bridge. MA: MIT Press.

    Book  Google Scholar 

  16. Kopell, N., Ermentrout, G. B., Whittington, M. A., & Traub, R. D. (2000). Gamma rhythms and beta rhythms have different synchronization properties. In Proceedings of National Academy Science, USA 97, 1867–1872.

  17. Amiri, M., Nazari, S., & Janahmadi, M. (2018). Digital configuration of astrocyte stimulation as a new technique to strengthen the impaired astrocytes in the tripartite synapse network. Journal of Computational Electronics, 17(3), 1382–1398.

    Article  Google Scholar 

  18. Heidarpur, M., Khosravifar, P., Ahmadi, A., & Ahmadi, M. (2020). CORDIC-Astrocyte: Tripartite glutamate-\(IP3-Ca^{2+}\) interaction dynamics on FPGA. IEEE Transactions of Biomedical Circuits System, 14(1), 36–47.

    Article  Google Scholar 

  19. Heidarpur, M., Ahmadi, A., & Ahmadi, M. (2019). Digital implementation of a biological-plausible model for astrocyte \(Ca^{2+}\) oscillations. Journal of Computational Electronics, pp. 857–868.

Download references

Acknowledgements

Authors would like to acknowledge the financial support of Kermanshah University of Technology for this research under Grant No. S/P/T/1405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Haghiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghiri, S., Ahmadi, A. An investigation on neuron–astrocyte interaction system: network behavior and synchronization. Analog Integr Circ Sig Process 108, 569–576 (2021). https://doi.org/10.1007/s10470-020-01735-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01735-5

Keywords

Navigation