Skip to main content
Log in

A mathematical modelling approach for managing sudden disturbances in a three-tier manufacturing supply chain

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper aims to develop a recovery planning approach in a three-tier manufacturing supply chain, which has a single supplier, manufacturer, and retailer under an imperfect production environment, in which we consider three types of sudden disturbances: demand fluctuation, and disruptions to production and raw material supply, which are not known in advance. Firstly, a mathematical model is developed for generating an ideal plan under imperfect production for a finite planning horizon while maximizing total profit, and then we re-formulate the model to generate the recovery plan after happening of each sudden disturbance. Considering the high commercial cost and computational intensity and complexity of this problem, we propose an efficient heuristic, to obtain a recovery plan, for each disturbance type, for a finite future period, after the occurrence of a disturbance. The heuristic solutions are compared with a standard solution technique for a considerable number of random test instances, which demonstrates the trustworthy performance of the developed heuristics. We also develop another heuristic for managing the combined effects of multiple sudden disturbances in a period. Finally, a simulation approach is proposed to investigate the effects of different types of disturbance events generated randomly. We present several numerical examples and random experiments to explicate the benefits of our developed approaches. Results reveal that in the event of sudden disturbances, the proposed mathematical and heuristic approaches are capable of generating recovery plans accurately and consistently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adhitya, A., Srinivasan, R., & Karimi, I. A. (2007). Amodel-based rescheduling framework for managing abnormal supply chain events. Computers & Chemical Engineering, 31, 496–518.

    Article  Google Scholar 

  • Ambulkar, S., Blackhurst, J., & Grawe, S. (2015). Firm’s resilience to supply chain disruptions: Scale development and empirical examination. Journal of Operations Management, 33, 111–122.

    Article  Google Scholar 

  • Atoei, F. B., Teimory, E., & Amiri, A. B. (2013). Designing reliable supply chain network with disruption risk. International Journal of Industrial Engineering Computations, 4(1), 111–126.

    Article  Google Scholar 

  • Bandaly, D., Satir, A., & Shanker, L. (2016). Impact of lead time variability in supply chain risk management. International Journal of Production Economics, 180, 88–100.

    Article  Google Scholar 

  • Blome, C., & Schoenherr, T. (2011). Supply chain risk management in financial crises—A multiple case-study approach. International Journal of Production Economics, 134(1), 43–57.

    Article  Google Scholar 

  • Bradley, J. R. (2014). An improved method for managing catastrophic supply chain disruptions. Business Horizons, 57(4), 483–495.

    Article  Google Scholar 

  • Burke, G. J., Carrillo, J. E., & Vakharia, A. J. (2007). Single versus multiple supplier sourcing strategies. European Journal of Operational Research, 182(1), 95–112.

    Article  Google Scholar 

  • Chaudhuri, A., Mohanty, B. K., & Singh, K. N. (2013). Supply chain risk assessment during new product development: A group decision making approach using numeric and linguistic data. International Journal of Production Research, 51(10), 2790–2804. https://doi.org/10.1080/00207543.2012.654922.

    Article  Google Scholar 

  • Chen, J., Sohal, A. S., & Prajogo, D. I. (2013). Supply chain operational risk mitigation: A collaborative approach. International Journal of Production Research, 51(7), 2186–2199.

    Article  Google Scholar 

  • Cheng, T. C. E. (1989). An economic production quantity model with flexibility and reliability considerations. European Journal of Operational Research, 39(2), 174–179.

    Article  Google Scholar 

  • Chopra, S., & Meindl, P. (2007). Supply chain management. Strategy, planning & operation. Berlin: Springer.

    Book  Google Scholar 

  • Chopra, S., & Sodhi, M. S. (2004). Managing risk to avoid supply-chain breakdown. MIT Sloan Management Review, 46(1), 53–61.

    Google Scholar 

  • Chowdhury, P., Lau, K. H., & Pittayachawan, S. (2016). Supply risk mitigation of small and medium enterprises: A social capital approach. In Proceedings of the 21st international symposium on logistics (pp. 37–44). Centre for Concurrent Enterprise, Nottingham University.

  • Christopher, M., Mena, C., Khan, O., & Yurt, O. (2011). Approaches to managing global sourcing risk. Supply Chain Management: An International Journal, 16(2), 67–81. https://doi.org/10.1108/13598541111115338.

    Article  Google Scholar 

  • Christopher, M., & Peck, H. (2004). Building the resilient supply chain. The International Journal of Logistics Management, 15(2), 1–14.

    Article  Google Scholar 

  • Craighead, C. W., Blackhurst, J., Rungtusanatham, M. J., & Handfield, R. B. (2007). The severity of supply chain disruptions: Design characteristics and mitigation capabilities. Decision Sciences, 38(1), 131–156.

    Article  Google Scholar 

  • Das, A., Narasimhan, R., & Talluri, S. (2006). Supplier integration—Finding an optimal configuration. Journal of Operations Management, 24(5), 563–582.

    Article  Google Scholar 

  • DuHadway, S., Carnovale, S., & Hazen, B. (2017). Understanding risk management for intentional supply chain disruptions: Risk detection, risk mitigation, and risk recovery. Annals of Operations Research. https://doi.org/10.1007/s10479-017-2452-0.

    Article  Google Scholar 

  • Eisenstein, D. D. (2005). Recovering cyclic schedules using dynamic produce-up-to policies. Operations Research, 53(4), 675–688.

    Article  Google Scholar 

  • Fahimnia, B., Tang, C. S., Davarzani, H., & Sarkis, J. (2015). Quantitative models for managing supply chain risks: A review. European Journal of Operational Research, 247(1), 1–15.

    Article  Google Scholar 

  • Fang, J., Zhao, L., Fransoo, J. C., & Van Woensel, T. (2013). Sourcing strategies in supply risk management: An approximate dynamic programming approach. Computers & Operations Research, 40(5), 1371–1382.

    Article  Google Scholar 

  • Gupta, V., He, B., & Sethi, S. P. (2015). Contingent sourcing under supply disruption and competition. International Journal of Production Research, 53(10), 3006–3027. https://doi.org/10.1080/00207543.2014.965351.

    Article  Google Scholar 

  • Handfield, R., & McCormack, K. P. (2007). Supply chain risk management: Minimizing disruptions in global sourcing. Boca Raton, FL: Auberbach Publications.

    Book  Google Scholar 

  • Hasan, M. M., Shohag, M. A. S., Azeem, A., & Paul, S. K. (2015). Multiple criteria supplier selection: A fuzzy approach. International Journal of Logistics Systems and Management, 20(4), 429–446. https://doi.org/10.1504/IJLSM.2015.068488.

    Article  Google Scholar 

  • Hendricks, K. B., & Singhal, V. R. (2003). The effect of supply chain glitches on shareholder wealth. Journal of Operations Management, 21(5), 501–522.

    Article  Google Scholar 

  • Hendricks, K. B., & Singhal, V. R. (2005). An empirical analysis of the effect of supply chain disruptions on long-run stock price performance and equity risk of the firm. Production and Operations Management, 14(1), 35–52.

    Article  Google Scholar 

  • Hishamuddin, H., Sarker, R., & Essam, D. (2012). A disruption recovery model for a single stage production-inventory system. European Journal of Operational Research, 222(3), 464–473.

    Article  Google Scholar 

  • Ho, W., Dey, P. K., & Lockstrom, M. (2011). Strategic sourcing: A combined QFD and AHP approach in manufacturing. Supply Chain Management: An International Journal, 16(6), 446–461.

    Article  Google Scholar 

  • Ho, W., Zheng, T., Yildiz, H., & Talluri, S. (2015). Supply chain risk management: A literature review. International Journal of Production Research, 53(16), 5031–5069.

    Article  Google Scholar 

  • Huo, B., Qi, Y., Wang, Z., & Zhao, X. (2014). The impact of supply chain integration on firm performance: The moderating role of competitive strategy. Supply Chain Management: An International Journal, 19(4), 369–384.

    Article  Google Scholar 

  • Ivanov, D., Dolgui, A., & Sokolov, B. (2017). Literature review on disruption recovery in the supply chain. International Journal of Production Research, 55(20), 6158–6174.

    Article  Google Scholar 

  • Ivanov, D., Pavlov, A., Dolgui, A., Pavlov, D., & Sokolov, B. (2016). Disruption-driven supply chain (re)-planning and performance impact assessment with consideration of pro-active and recovery policies. Transportation Research Part E: Logistics and Transportation Review, 90, 7–24.

    Article  Google Scholar 

  • Ivanov, D., Pavlov, A., & Sokolov, B. (2014). Optimal distribution (re)planning in a centralized multi-stage supply network under conditions of the ripple effect and structure dynamics. European Journal of Operational Research, 237(2), 758–770.

    Article  Google Scholar 

  • Kim, Y., Chen, Y. S., & Linderman, K. (2015). Supply network disruption and resilience: A network structural perspective. Journal of Operations Management, 33, 43–59.

    Article  Google Scholar 

  • Lockamy, A., III, & McCormack, K. (2010). Analysing risks in supply networks to facilitate outsourcing decisions. International Journal of Production Research, 48(2), 593–611. https://doi.org/10.1080/00207540903175152.

    Article  Google Scholar 

  • Manuj, I., & Mentzer, J. T. (2008). Global supply chain risk management. Journal of Business Logistics, 29(1), 133–155.

    Article  Google Scholar 

  • Mishra, D., Sharma, R. R. K., Kumar, S., & Dubey, R. (2016). Bridging and buffering: Strategies for mitigating supply risk and improving supply chain performance. International Journal of Production Economics, 180, 183–197. https://doi.org/10.1016/J.IJPE.2016.08.005.

    Article  Google Scholar 

  • Nagurney, A., Cruz, J., Dong, J., & Zhang, D. (2005). Supply chain networks, electronic commerce, and supply side and demand side risk. European Journal of Operational Research, 164(1), 120–142. https://doi.org/10.1016/j.ejor.2003.11.007.

    Article  Google Scholar 

  • Narasimhan, R., & Talluri, S. (2009). Perspectives on risk management in supply chains. Journal of Operations Management, 27(2), 114–118.

    Article  Google Scholar 

  • Oke, A., & Gopalakrishnan, M. (2009). Managing disruptions in supply chains: A case study of a retail supply chain. International Journal of Production Economics, 118(1), 168–174.

    Article  Google Scholar 

  • Paul, S. K., Asian, S., Goh, M., & Torabi, S. A. (2019). Managing sudden transportation disruptions in supply chains under delivery delay and quantity loss. Annals of Operations Research, 273(1–2), 783–814.

    Article  Google Scholar 

  • Paul, S. K., Azeem, A., Sarker, R., & Essam, D. (2014a). Development of a production inventory model with uncertainty and reliability considerations. Optimization and Engineering, 15(3), 697–720.

    Article  Google Scholar 

  • Paul, S. K., & Rahman, S. (2018). A quantitative and simulation model for managing sudden supply delay with fuzzy demand and safety stock. International Journal of Production Research, 56(13), 4377–4395.

    Article  Google Scholar 

  • Paul, S. K., Sarker, R., & Essam, D. (2013). A disruption recovery model in a production-inventory system with demand uncertainty and process reliability. Lecture Notes in Computer Science, 8104, 511–522.

    Article  Google Scholar 

  • Paul, S. K., Sarker, R., & Essam, D. (2014b). Real time disruption management for a two-stage batch production-inventory system with reliability considerations. European Journal of Operational Research, 237(1), 113–128.

    Article  Google Scholar 

  • Paul, S. K., Sarker, R., & Essam, D. (2014b). Managing supply disruption in a three-tier supply chain with multiple suppliers and retailers. In IEEE international conference on industrial engineering and engineering management (pp. 194–198).

  • Paul, S. K., Sarker, R., & Essam, D. (2014d). Managing real-time demand fluctuation under a supplier–retailer coordinated system. International Journal of Production Economics, 158, 231–243.

    Article  Google Scholar 

  • Paul, S. K., Sarker, R., & Essam, D. (2015a). Managing disruption in an imperfect production-inventory system. Computers & Industrial Engineering, 84, 101–112.

    Article  Google Scholar 

  • Paul, S. K., Sarker, R., & Essam, D. (2015b). A disruption recovery plan in a three-stage production-inventory system. Computers & Operations Research, 57, 60–72.

    Article  Google Scholar 

  • Paul, S. K., Sarker, R., & Essam, D. (2016). Managing risk and disruption in production-inventory and supply chain systems: A review. Journal of Industrial and Management Optimization, 12(3), 1009–1029.

    Article  Google Scholar 

  • Paul, S. K., Sarker, R., & Essam, D. (2017). A quantitative model for disruption mitigation in a supply chain. European Journal of Operational Research, 257(3), 881–895.

    Article  Google Scholar 

  • Paul, S. K., Sarker, R., & Essam, D. (2018). A reactive mitigation approach for managing supply disruption in a three-tier supply chain. Journal of Intelligent Manufacturing, 29(7), 1581–1597. https://doi.org/10.1007/s10845-016-1200-7.

    Article  Google Scholar 

  • Riglietti, G., & Aguada, L. (2018). Supply chain resilience report. The Business Continuity Institute.

  • Sarkar, A., Mohapatra, P. K. J., Chaudhary, A., Agrawal, A., Mandal, A., & Padhi, S. S. (2013). Single or multiple sourcing: A method for determining the optimal size of the supply base. Technology Operation Management, 3(1–2), 17–31. https://doi.org/10.1007/s13727-013-0013-6.

    Article  Google Scholar 

  • Serel, D. A. (2015). Production and pricing policies in dual sourcing supply chains. Transportation Research Part E: Logistics and Transportation Review, 76, 1–12.

    Article  Google Scholar 

  • Sheffi, Y., & Rice, J. B. J. (2005). A supply chain view of the resilient enterprise. MIT Sloan Management Review, 47(1), 41–48.

    Google Scholar 

  • Silbermayr, L., & Minner, S. (2014). A multiple sourcing inventory model under disruption risk. International Journal of Production Economics, 149, 37–46.

    Article  Google Scholar 

  • Snyder, L. V., Atan, Z., Peng, P., Rong, Y., Schmitt, A. J., & Sinsoysal, B. (2016). OR/MS models for supply chain disruptions: A review. IIE Transactions, 48(2), 89–109.

    Article  Google Scholar 

  • Tang, C. (2006). Robust strategies for mitigating supply chain disruptions. International Journal of Logistics: Reserach and Applications, 9(1), 33–45.

    Article  Google Scholar 

  • Tang, O., & Nurmaya Musa, S. (2011). Identifying risk issues and research advancements in supply chain risk management. International Journal of Production Economics, 133(1), 25–34. https://doi.org/10.1016/j.ijpe.2010.06.013.

    Article  Google Scholar 

  • Thun, J.-H., & Hoenig, D. (2011). An empirical analysis of supply chain risk management in the German automotive industry. International Journal of Production Economics, 131(1), 242–249.

    Article  Google Scholar 

  • Tomlin, B. (2006). On the value of mitigation and contingency strategies for managing supply chain disruption risks. Management Science, 52(5), 639–657.

    Article  Google Scholar 

  • Wagner, S., & Bode, C. (2008). An empirical examination of supply chain performance along several demensions of risk. Journal of Business Logistics, 29(1), 307–325.

    Article  Google Scholar 

  • Wakolbinger, T., & Cruz, J. M. (2011). Supply chain disruption risk management through strategic information acquisition and sharing and risk-sharing contracts. International Journal of Production Research, 49(13), 4063–4084.

    Article  Google Scholar 

  • Wieland, A., & Wallenburg, C. M. (2012). Dealing with supply chain risks: Linking risk management practices and strategies to performance. International Journal of Physical Distribution & Logistics Management, 42(10), 887–905.

    Article  Google Scholar 

  • Wu, T., Blackhurst, J., & Chidambaram, V. (2006). A model for inbound supply risk analysis. Computers in Industry, 57(4), 350–365.

    Article  Google Scholar 

  • Wu, T., Blackhurst, J., & O’grady, P. (2007). Methodology for supply chain disruption analysis. International Journal of Production Research, 45(7), 1665–1682.

    Article  Google Scholar 

  • Xia, Y., Yang, M. H., Golany, B., Gilbert, S. M., & Yu, G. (2004). Real-time disruption management in a two-stage production and inventory system. IIE Transactions, 36, 111–125.

    Article  Google Scholar 

  • Xiao, T., Qi, X., & Yu, G. (2007). Coordination of supply chain after demand disruptions when retailers compete. International Journal of Production Economics, 109(1–2), 162–179.

    Article  Google Scholar 

  • Xu, J., Zhuang, J., & Liu, Z. (2016). Modeling and mitigating the effects of supply chain disruption in a defender–attacker game. Annals of Operations Research, 236(1), 255–270.

    Article  Google Scholar 

  • Yang, J., Oi, X., & Yu, G. (2005). Disruption management in production planning. Naval Research Logistics, 52, 420–442.

    Article  Google Scholar 

  • Yu, H., Zeng, A. Z., & Zhao, L. (2009). Single or dual sourcing: Decision-making in the presence of supply chain disruption risks. Omega, 37(4), 788–800.

    Article  Google Scholar 

  • Zsidisin, G. A., Panelli, A., & Upton, R. (2000). Purchasing organization involvement in risk assessments, contingency plans, and risk management: An exploratory study. Supply Chain Management: An International Journal, 5(4), 187–198. https://doi.org/10.1108/13598540010347307.

    Article  Google Scholar 

  • Zsidisin, G. A., & Smith, M. E. (2005). Managing supply risk with early supplier involvement: A case study and research propositions. Journal of Supply Chain Management, 41(4), 44–57.

    Article  Google Scholar 

Download references

Acknowledgements

This research is partially funded by Australian Research Council DP170102416 awarded to Prof. Ruhul Sarker and Dr. Daryl Essam and Business Research Grant 02.101080.130.2210197 from the University of Technology Sydney awarded to Dr. Sanjoy Paul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjoy Kumar Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix 1: Modeling for sudden production disruption

Appendix 1 formulates the mathematical model for generating the recovery plan after a sudden production disruption. The model considers the costs of production, delivery, holding, raw materials, backorder, and lost sales, and determines the revenue from the selling price. Finally, the model is formulated as a constrained mathematical programming problem in which the total profit to be maximized is subject to constraints from capacity, demand, delivery, and inventory.

$$ {\text{Total}}\,{\text{production}}\,{\text{cost}} = \frac{{C_{p} }}{r}\mathop \sum \limits_{i = 1}^{n} X_{i} $$
(54)
$$ {\text{Total}}\,{\text{rejection}}\,{\text{cost}} = C_{R} \left( {\frac{1}{r} - 1} \right)\mathop \sum \limits_{i = 1}^{n} X_{i} $$
(55)
$$ {\text{Total}}\,{\text{inspection}}\,{\text{cost}} = \frac{{C_{I} C_{p} }}{r}\mathop \sum \limits_{i = 1}^{n} X_{i} $$
(56)
$$ {\text{Cost}}\,{\text{of}}\,{\text{interest}}\,{\text{and}}\,{\text{depreciation}} = naA^{ - b} r^{c} $$
(57)
$$ {\text{Total}}\,{\text{raw}}\,{\text{material}}\,{\text{cost}} = \mathop \sum \limits_{i = 1}^{n} C_{r} Z_{i} = \frac{{NC_{r} }}{r}\mathop \sum \limits_{i = 1}^{n} X_{i} $$
(58)
$$ {\text{Raw}}\,{\text{material}}\,{\text{holding}}\,{\text{cost}} = \frac{1}{2r}H_{1} N\mathop \sum \limits_{i = 1}^{n} X_{i} $$
(59)
$$ {\text{Total}}\,{\text{delivery}}\,{\text{cost}} = \mathop \sum \limits_{i = 1}^{n} C_{d} Y_{i} $$
(60)
$$ {\text{Total}}\,{\text{ending}}\,{\text{inventory}}\,{\text{holding}}\,{\text{cost}} = H_{2} \mathop \sum \limits_{i = 1}^{n} e_{i} $$
(61)
$$ {\text{Backorder}}\,{\text{cost}} = B\mathop \sum \limits_{i = 2}^{n} \left( {i - 1} \right)(X_{i} - AP_{i} ) $$
(62)
$$ {\text{Lost}}\,{\text{sales}}\,{\text{cost}} = L\left( {\mathop \sum \limits_{i = 1}^{n} AP_{i} - \mathop \sum \limits_{i = 1}^{n} X_{i} } \right) $$
(63)
$$ {\text{Total}}\,{\text{revenue}} = S\mathop \sum \limits_{i = 1}^{n} X_{i} $$
(64)

Final mathematical model

Total profit = total revenue − total costs, is the objective function and to be maximized, which is obtained using Eqs. (54)–(64) and subject to constraints (65)–(73).

$$ e_{i} \ge E_{i} ;\quad \forall i\,\left[ {{\text{Constraint}}\,{\text{of}}\,{\text{ending}}\,{\text{inventory}}} \right] $$
(65)
$$ b_{i} \ge B_{i} ;\quad \forall i\left[ {{\text{Constraint}}\,{\text{of}}\,{\text{beginning}}\,{\text{inventory}}} \right] $$
(66)
$$ X_{1} \le r\left( {P - T_{dp} *P} \right)\,\left[ {{\text{Limitation}}\,{\text{of}}\,{\text{production}}\,{\text{quantity}}\,{\text{in}}\,{\text{first}}\,{\text{period}}} \right] $$
(67)
$$ X_{i} \le rP;\quad \forall i \ne 1\left[ {{\text{Limitation}}\,{\text{of}}\,{\text{production}}\,{\text{quantity}}\,{\text{in}}\,{\text{each}}\,{\text{period}}} \right] $$
(68)
$$ X_{i} \ge AP_{i} ;\quad \forall i \ne 1\,\left[ {{\text{Constraint}}\,{\text{for}}\,{\text{production}}\,{\text{in}}\,{\text{recovery}}\,{\text{plan}}} \right] $$
(69)
$$ \mathop \sum \limits_{i = 1}^{n} X_{i} \le \mathop \sum \limits_{i = 1}^{n} D_{i} + b_{n + 1} - b_{1} \,\left[ {{\text{Limitation}}\,{\text{of}}\,{\text{total}}\,{\text{production}}\,{\text{quantity}}} \right] $$
(70)
$$ \mathop \sum \limits_{i = 1}^{n} AP_{i} - \mathop \sum \limits_{i = 1}^{n} X_{i} \ge 0\,\left[ {{\text{Constraint}}\,{\text{of}}\,{\text{lost}}\,{\text{sales}}\,{\text{quantity}}} \right] $$
(71)
$$ \mathop \sum \limits_{i = 1}^{n} Y_{i} \le \mathop \sum \limits_{i = 1}^{n} D_{i} \,\left[ {{\text{Limitation}}\,{\text{of}}\,{\text{total}}\,{\text{delivery}}} \right] $$
(72)
$$ X_{i} ,Y_{i} ,Z_{i} \ge 0\quad {\text{and}}\quad {\text{integer}};\quad \forall i\left[ {{\text{Non-negativity}}\,{\text{constraint}}} \right] $$
(73)

1.2 Appendix 2: Modeling for sudden supply disruption

In this appendix, a constrained mathematical programing model is formulated for generating the recovery plan after a sudden supply disruption in which the total profit is maximized subject to the constraints from capacity, demand, delivery, and inventory.

$$ {\text{Total}}\,{\text{production}}\,{\text{cost}} = \frac{{C_{p} }}{r}\mathop \sum \limits_{i = 1}^{n} X_{i} $$
(74)
$$ {\text{Total}}\,{\text{rejection}}\,{\text{cost}} = C_{R} \left( {\frac{1}{r} - 1} \right)\mathop \sum \limits_{i = 1}^{n} X_{i} $$
(75)
$$ {\text{Total}}\,{\text{inspection}}\,{\text{cost}} = \frac{{C_{I} C_{p} }}{r}\mathop \sum \limits_{i = 1}^{n} X_{i} $$
(76)
$$ {\text{Cost}}\,{\text{of}}\,{\text{interest}}\,{\text{and}}\,{\text{depreciation}} = naA^{ - b} r^{c} $$
(77)
$$ {\text{Total}}\,{\text{raw}}\,{\text{material}}\,{\text{cost}} = \mathop \sum \limits_{i = 1}^{n} C_{r} Z_{i} = \frac{{NC_{r} }}{r}\mathop \sum \limits_{i = 1}^{n} X_{i} $$
(78)
$$ {\text{Raw}}\,{\text{material}}\,{\text{holding}}\,{\text{cost}} = \frac{1}{2r}H_{1} N\mathop \sum \limits_{i = 1}^{n} X_{i} $$
(79)
$$ {\text{Total}}\,{\text{delivery}}\,{\text{cost}} = \mathop \sum \limits_{i = 1}^{n} C_{d} Y_{i} $$
(80)
$$ {\text{Total}}\,{\text{ending}}\,{\text{inventory}}\,{\text{holding}}\,{\text{cost}} = H_{2} \mathop \sum \limits_{i = 1}^{n} e_{i} $$
(81)
$$ {\text{Backorder}}\,{\text{cost}} = B\mathop \sum \limits_{i = 2}^{n} \left( {i - 1} \right)(X_{i} - AP_{i} ) $$
(82)
$$ {\text{Lost}}\,{\text{sales}}\,{\text{cost}} = L\left( {\mathop \sum \limits_{i = 1}^{n} AP_{i} - \mathop \sum \limits_{i = 1}^{n} X_{i} } \right) $$
(83)
$$ {\text{Total}}\,{\text{revenue}} = S\mathop \sum \limits_{i = 1}^{n} X_{i} $$
(84)

Final mathematical model

Total profit = total revenue − total costs, is the objective function and to be maximized, which is obtained using Eqs. (74)–(84) and subject to constraints (85)–(93).

$$ e_{i} \ge E_{i} ;\quad \forall i\,\left[ {{\text{Constraint}}\,{\text{of}}\,{\text{ending}}\,{\text{inventory}}} \right] $$
(85)
$$ b_{i} \ge B_{i} ;\quad \forall i\left[ {{\text{Constraint}}\,{\text{of}}\,{\text{beginning}}\,{\text{inventory}}} \right] $$
(86)
$$ X_{1} \le r\left( {P - T_{ds} *P} \right)\left[ {{\text{Limitation}}\,{\text{of}}\,{\text{production}}\,{\text{quantity}}\,{\text{in}}\,{\text{first}}\,{\text{period}}} \right] $$
(87)
$$ X_{i} \le rP;\quad \forall i \ne 1\,\left[ {{\text{Limitation}}\,{\text{of}}\,{\text{production}}\,{\text{quantity}}\,{\text{in}}\,{\text{each}}\,{\text{period}}} \right] $$
(88)
$$ X_{i} \ge AP_{i} ; \quad \forall i \ne 1\,\left[ {{\text{Constraint}}\,{\text{for}}\,{\text{production}}\,{\text{in}}\,{\text{recovery}}\,{\text{plan}}} \right] $$
(89)
$$ \mathop \sum \limits_{i = 1}^{n} X_{i} \le \mathop \sum \limits_{i = 1}^{n} D_{i} + b_{n + 1} - b_{1} \,\left[ {{\text{Limitation}}\,{\text{of}}\,{\text{total}}\,{\text{production}}\,{\text{quantity}}} \right] $$
(90)
$$ \mathop \sum \limits_{i = 1}^{n} AP_{i} - \mathop \sum \limits_{i = 1}^{n} X_{i} \ge 0\,\left[ {{\text{Constraint}}\,{\text{of}}\,{\text{lost}}\,{\text{sales}}\,{\text{quantity}}} \right] $$
(91)
$$ \mathop \sum \limits_{i = 1}^{n} Y_{i} \le \mathop \sum \limits_{i = 1}^{n} D_{i} \,\left[ {{\text{Limitation}}\,{\text{of}}\,{\text{total}}\,{\text{delivery}}} \right] $$
(92)
$$ X_{i} ,Y_{i} ,Z_{i} \ge 0\quad {\text{and}}\quad {\text{integer}};\quad \forall i\left[ {{\text{Non-negativity}}\,{\text{constraint}}} \right] $$
(93)

1.3 Appendix 3: Heuristic 2: generating recovery plan for a sudden production disruption

This appendix shows heuristic steps to generate recovery plan for a sudden production disruption.

figure c

1.4 Appendix 4: Heuristic 3: generating recovery plan for a sudden supply disruption

This appendix shows heuristic steps to generate recovery plan for a sudden supply disruption.

figure d

1.5 Appendix 5: Heuristic 4: for considering combined effect multiple disturbances

A demand fluctuation occurs at the retailer end, a supply disruption at the supplier end, and a production disruption at the manufacturing plant. Multiple disturbances can happen together in a period, in which case their effects must be considered when formulating a recovery plan. We develop a heuristic to deal with multiple disturbances and use random data to develop multiple disturbance scenarios. The steps in Heuristic 4 for managing multiple disturbances in a period are presented below.

figure e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S.K., Sarker, R., Essam, D. et al. A mathematical modelling approach for managing sudden disturbances in a three-tier manufacturing supply chain. Ann Oper Res 280, 299–335 (2019). https://doi.org/10.1007/s10479-019-03251-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03251-w

Keywords

Navigation