Skip to main content
Log in

A state-dependent perishability (sS) inventory model with random batch demands

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider continuous-review perishable inventory models with random lead times and state-dependent Poisson demand. The paper revises an earlier work of Barron and Baron (IISE Trans 1–52, 2019). While the former studies unit Poisson demands, this paper deals with demand uncertainty and allows for random batch demands. We conduct a comprehensive analysis of two main models that have different lead times and perish times under backorders or lost sales. Thus, our models can be applied to many industries, in situations where the system is subject to random perishability, random lead time, and demand uncertainty. With a probabilistic approach, we derive a long-run average cost function under the (Ss) replenishment policy. Numerical examples are used to demonstrate the impact of changing batch size and other system parameters on the optimal policy. Our numerical study indicates that, although the Markovian policy can be used as a good approximation of the average total cost, it performs better for a general perish time. We further show that the optimal cost may differ for a different average batch size, while the batch variability seems to provide some robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baron, O., Berman, O., & Perry, D. (2010). Continuous review inventory models for perishability items ordered in batches. Mathematical Methods of Operations Research, 72, 217–247.

    Article  Google Scholar 

  • Baron, O., Berman, O., & Perry, D. (2011). Shelf-space management when demand depends on the inventory level. Production and Operations Management, 20, 714–726.

    Article  Google Scholar 

  • Baron, O., Berman, O., & Perry, D. (2017). Continuous review inventory models for perishable items with leadtimes. Probability in the Engineering and Informational Sciences, 46, 1–26.

    Article  Google Scholar 

  • Barron, Y., & Baron. O. (2019). Queueing and Markov chain decomposition approach for perishability models: The (S, s) control policy with lead time. IISE Transactions, 1–52.

  • Barron, Y. (2017). An order-revenue inventory model with returns and sudden obsolescence. Operations Research Letters, 46, 88–92.

    Article  Google Scholar 

  • Basten, R. J. I., & van Houtum, G. J. (2014). System-oriented inventory models for spare parts. Surveys in Operations Research and Management Science, 19(1), 34–55.

    Article  Google Scholar 

  • Bensoussan, A., Liu, R. H., & Sethi, S. P. (2005). Optimality of an \((s, S)\) policy with compound Poisson and diffusion demands: A quasi-variational inequalities approach. SIAM Journal on Control and Optimization, 44(5), 1650–1676.

    Article  Google Scholar 

  • Beyer, D., Cheng, F., Sethi, S. P., & Taksar, M. (2010). Markovian demand inventory models. New York: Springer.

    Book  Google Scholar 

  • Boxma, O., Perry, D., & Zacks, S. (2014). A fluid EOQ model of perishable items with intermittent high and low demand rates. Mathematics of Operations Research, 40, 390–402.

    Article  Google Scholar 

  • Chang, C. T., Teng, J. T., & Goyal, S. K. (2010). Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand. International Journal of Production Economics, 123(1), 62–68.

    Article  Google Scholar 

  • de Oliveira Pacheco, E., Cannella, S., Lüders, R., & Barbosa-Povoa, A. P. (2017). Order-up-to-level policy update procedure for a supply chain subject to market demand uncertainty. Computers & Industrial Engineering, 113, 347–355.

    Article  Google Scholar 

  • Demirag, O. C., Kumar, S., & Rao, K. M. (2017). A note on inventory policies for products with residual-life-dependent demand. Applied Mathematical Modelling, 43, 647–658.

    Article  Google Scholar 

  • Dreyfuss, M., & Giat, Y. (2017). Optimal spares allocation to an exchangeable-item repair system with tolerable wait. European Journal of Operational Research, 261(2), 584–594.

    Article  Google Scholar 

  • Economou, A., & Manou, A. (2015). A probabilistic approach for the analysis of the \(M_{n}/G/1\) queue. Annals of Operations Research. https://doi.org/10.1007/s10479-015-1943-0.

  • Feng, L., Chan, Y. L., & Cárdenas-Barrón, L. E. (2017). Pricing and lot-sizing polices for perishable goods when the demand depends on selling price, displayed stocks, and expiration date. International Journal of Production Economics, 185, 11–20.

    Article  Google Scholar 

  • Gürler, Ü., & Özkaya, B. Y. (2008). Analysis of the \((s, S)\) policy for perishables with a random shelf life. IIE Transactions, 40, 759–781.

    Article  Google Scholar 

  • Kalpakam, S., & Sapna, K. P. (1994). Continuous review \((s, S)\) inventory system with random lifetimes and positive leadtimes. Operations Research Letters, 16, 115–119.

    Article  Google Scholar 

  • Kalpakam, S., & Sapna, K. P. (1996). A lost sales \((S-1, S)\) perishable inventory system with renewal demand. Naval Research Logistics, 43, 129–142.

    Article  Google Scholar 

  • Ketzenberg, M., & Ferguson, M. E. (2008). Managing slow-moving perishables in the grocery industry. Production and Operations Management, 17(5), 513–521.

    Article  Google Scholar 

  • Kouki, C., Babai, M. Z., Jemai, Z., & Minner, S. (2016). A coordinated multi-item inventory system for perishables with random lifetime. International Journal of Production Economics, 181, 226–237.

    Article  Google Scholar 

  • Latouche, G., & Ramaswami, V. (1999). Introduction to matrix analytic methods in stochastic modeling. ASA-SIAM series on statistics and applied mathematics (Vol. 5). Philadelphia: SIAM.

    Google Scholar 

  • Lian, Z., & Liu, L. (2001). Continuous review perishable inventory systems: Models and heuristics. IIE Transactions, 33, 809–822.

    Google Scholar 

  • Liu, L., & Lian, Z. (1999). \((s, S)\) continuous review model for products with fixed lifetimes. Operations Research, 47, 150–158.

    Article  Google Scholar 

  • Liu, L., & Yang, T. (1999). An \((s, S)\) random lifetime inventory model with a positive lead time. European Journal of Operational Research, 113, 52–63.

    Article  Google Scholar 

  • Li, Q., & Yu, P. (2014). Multimodularity and its applications in three stochastic dynamic inventory problems. Manufacturing & Service Operations Management, 16, 455–463.

    Article  Google Scholar 

  • Martinez-de-Albeniz, V., & Roels, G. (2011). Competing for shelf space. Production and Operations Management, 10, 32–46.

    Article  Google Scholar 

  • Minner, S., & Silver, E. A. (2007). Replenishment policies for multiple products with compound-Poisson demand that share a common warehouse. International Journal of Production Economics, 108(1), 388–398.

    Article  Google Scholar 

  • Neuts, N. F. (1981). Matrix-geometric solutions in stochastic models. An algorithmic approach. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Peterson, R., & Silver, E. A. (1979). Decision systems for inventory management and production planning (p. 799). New York: Wiley.

    Google Scholar 

  • Presman, E., & Sethi, S. P. (2006). Inventory models with continuous and Poisson demands and discounted and average costs. Production and Operations Management, 15(2), 279–293.

    Article  Google Scholar 

  • Richards, F. R. (1975). Comments on the distribution of inventory position in a continuous-review \((s, S)\) inventory system. Operations Research, 23(2), 366–371.

    Article  Google Scholar 

  • Sahin, I. (1983). On the continuous-review \((s, S)\) inventory model under compound renewal demand and random lead times. Journal of Applied Probability, 20(1), 213–219.

    Article  Google Scholar 

  • Song, J. S., & Zipkin, P. (1993). Inventory control in a fluctuating demand environment. Operations Research, 41(2), 351–370.

    Article  Google Scholar 

  • Springael, J., & van Nieuwenhuyse, I. (2005). A lost sales inventory model with a compound poisson demand pattern. University of Antwerp, Faculty of Applied Economics.

  • Thompstone, R. M., & Silver, E. A. (1975). A coordinated inventory control system for compound Poisson demand and zero lead time. The International Journal of Production Research, 13(6), 581–602.

    Article  Google Scholar 

  • Weiss, H. (1980). Optimal ordering policies for continuous review perishable inventory models. Operations Research, 28, 365–374.

    Article  Google Scholar 

  • Zipkin, P. (1986). Stochastic leadtimes in continuous-time inventory models. Naval Research Logistics, 33, 763–774.

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to the anonymous referees for helpful comments and suggestions that led to substantial improvements of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Barron.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A. The steady-state probabilities for the general perish time

The steady-state probabilities \(\pi _{n},n\le S\) for the general perish time model are given by

$$\begin{aligned} \underset{s\ge 0}{\pi _{n}}=\left\{ \begin{array} [c]{lll} \mathrm{(i)}&{} \frac{1-F^{*}(\lambda _{S})}{\lambda _{S}E(C)}, &{}\quad n=S,\\ \mathrm{(ii)}&{}\sum \limits _{i=1}^{\min (\S ,S-n)}\frac{\pi _{n+i}\lambda _{n+i}p_{_{D}}(i)\left[ 1-R_{n+i}^{*}(\lambda _{n})\right] }{\lambda _{n} }, &{}\quad s<n<S,\\ \mathrm{(iii)}&{}\sum \limits _{i=1}^{\min (\S ,S-n)}\frac{\pi _{n+i}\lambda _{n+i}p_{_{D}}(i)\left[ 1-R_{n+i}^{*}(\lambda _{n}+\xi )\right] }{\lambda _{n}+\xi }, &{}\quad 0<n\le s,\\ \mathrm{(iv)}&{}\frac{\sum \nolimits _{i=1}^{\min (\S ,S)}\pi _{i}\lambda _{i} P_{D}(i)+\frac{1}{E(C)}F^{*}(\lambda _{S})+\sum \nolimits _{i=s+1}^{S-1} \sum \nolimits _{k=1}^{\min (\S ,S-i)}\pi _{i+k}\lambda _{i+k}p_{_{D}}(k)R_{i+k} ^{*}\left( \lambda _{i}\right) }{\lambda _{0}+\xi } &{} \\ &{}\qquad +\frac{\sum \nolimits _{i=1}^{s}\sum \nolimits _{k=1} ^{\min (\S ,S-i)}\pi _{i+k}\lambda _{i+k}p_{_{D}}(k)R_{i+k}^{*}\left( \lambda _{i}+\xi \right) }{\lambda _{0}+\xi }, &{}\quad n=0,\\ \mathrm{(v)}&{} \frac{\sum \nolimits _{i=1}^{\min (\S ,S-n)}\pi _{n+i}\lambda _{n+i}p_{_{D}}(i)}{\lambda _{n}+\xi }, &{}\quad n<0. \end{array} \right. \nonumber \\ \end{aligned}$$
(A.1)

For \(s\le 0\), case (iii) is omitted and the numerator of case (iv) becomes

$$\begin{aligned} \sum \limits _{i=1}^{\min (\S ,S)}\pi _{i}\lambda _{i}P_{D}(i)+\frac{1}{E(C)}F^{*}(\lambda _{S})+\sum \limits _{i=s+1}^{S-1}\sum \limits _{k=1} ^{\min (\S ,S-i)}\pi _{i+k}\lambda _{i+k}p_{_{D}}(k)R_{i+k}^{*}\left( \lambda _{i}\right) . \end{aligned}$$

In addition, for \(s<0\), the denominator of case (iv) is replaced by \(\lambda _{n}\) (instead of \(\lambda _{0}+\xi \)) and case (v) becomes

$$\begin{aligned} \begin{array} [c]{lll} \mathrm{(v)}&{} \frac{1}{\lambda _{n}}\left( \sum \limits _{i=1}^{\min (\S ,S-n)}\pi _{n+i}\lambda _{n+i}p_{_{D}}(i)\right) , &{} \quad s<n<0,\\ \mathrm{(vi)}&{} \frac{1}{\lambda _{n}+\xi }\left( \sum \limits _{i=1} ^{\min (\S ,S-n)}\pi _{n+i}\lambda _{n+i}p_{_{D}}(i)\right) , &{} \quad n\le s. \end{array} \end{aligned}$$
(A.2)

Note that for \(n<0\) the steady-state probability can be directly derived from the analysis of the Markov chain by applying (13) (v).

B. The steady-state probabilities for the general lead time

The steady-state probabilities \(\pi _{n},n\le S\) for the general lead time model are given by

$$\begin{aligned} \underset{s>0}{\pi _{n}}=\left\{ \begin{array} [c]{lll} \mathrm{(i)}&{}\frac{1}{\lambda _{S}+\mu }\frac{1}{E(C)}, &{} \quad n=S,\\ \mathrm{(ii)}&{}\frac{\sum \nolimits _{i=1}^{\min (\S ,S-n)}\lambda _{n+i}\pi _{n+i}p_{_{D}}(i)}{\lambda _{n}+\mu }, &{} \quad s<n<S,\\ \mathrm{(iii)}&{} \frac{\sum \nolimits _{i=1}^{\min (\S ,S-n)}\lambda _{n+i}\pi _{n+i}p_{_{D}}(i)\left( 1-R_{n+i}^{*}(\lambda _{n}+\mu )\right) }{\lambda _{n}+\mu }, &{} \quad 0<n\le s,\\ \mathrm{(iv)}&{} \frac{\sum \nolimits _{i=1}^{\min (\S ,S)}\lambda _{i}\pi _{i}p_{_{D} }(i)\left( 1-R_{i}^{*}(\lambda _{0})\right) +\sum _{i=1}^{s}\pi _{i} \mu (1-R_{i}^{*}(\lambda _{0}))+\sum _{i=s+1}^{S}\pi _{i}\mu (1-G^{*} (\lambda _{0}))}{\lambda _{0}} &{} \\ &{}\qquad =\frac{1-\overline{R}^{*}(\lambda _{0})}{\lambda _{0} }\left( \sum \limits _{i=1}^{\min (\S ,S)}\pi _{i}\lambda _{i}p_{_{D}}(i)+ {\textstyle \sum \nolimits _{i=1}^{S}} \mu \pi _{i}\right) , &{} \quad n=0,\\ \mathrm{(v)}&{}\frac{\sum \nolimits _{i=1}^{\min (\S ,S-n)}\lambda _{n+i}\pi _{n+i}p_{_{D}}(i)\left( 1-R_{n+i}^{*}(\lambda _{n})\right) }{\lambda _{n} }. &{} \quad n<0, \end{array} \right. \nonumber \\ \end{aligned}$$
(B.1)

For \(s=0\), case (iii) is omitted, and case (iv) becomes

$$\begin{aligned} \frac{\sum \nolimits _{i=1}^{\min (\S ,S)}\lambda _{i}\pi _{i}p_{_{D}}(i)\left( 1-R_{i}^{*}(\lambda _{0})\right) +\sum _{i=1}^{S}\pi _{i}\mu (1-G^{*}(\lambda _{0}))}{\lambda _{0}}. \end{aligned}$$

For \(s<0\), we have similar equations for cases (i) and (ii), case (iii) is omitted, the region \(s<n\le 0\) is derived from the Markov chain analysis, and case (v) holds for \(n\le s\).

C. Selected studies on continuous review (Ss) inventory policy with perishability

In the following table, we summarize the most important literature studies concerning the (Ss) policy with perishability.

Authors

Demand dist.

Lead time dist.

Life time dist.

Policy

Weiss (1980)

Poisson

Zero

Fixed

Backorder, lost sales

Kalpakam and Sapna (1994)

Poisson

Exp

Exp

Lost sales

Kalpakam and Sapna (1996)

Renewal process

Exp

Exp

\((S,S-1)\) policy, lost sales

Liu and Lian (1999)

Renewal process

Zero

Fixed

Backorder

Liu and Yang (1999)

Poisson

Exp

Exp

Backorder

Lian and Liu (2001)

Renewal process general batch size

Zero

Fixed

Backorder

Gürler and Özkaya (2008)

Renewal process

Zero

General

Backorder

Baron et al. (2010)

Compound poisson

Zero

Exp

Policy, lost sales

Kouki et al. (2016)

Poisson

Zero

General

Backorder

Baron et al. (2017)

State-dependent Compound Poisson

Exp

Exp

Lost sales

Barron and Baron (2019)

State-dependent Poisson

General L.T. and exp life time or exp lead time and general life time

Backorder, key steps for lost sales

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barron, Y. A state-dependent perishability (sS) inventory model with random batch demands. Ann Oper Res 280, 65–98 (2019). https://doi.org/10.1007/s10479-019-03302-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03302-2

Keywords

Navigation