Skip to main content
Log in

A dynamic game approach to demand disruptions of green supply chain with government intervention (case study: automotive supply chain)

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Continuous changes in today’s market have exposed supply chain (SC) management to severe challenges. Such changes in the market are divided into two general categories: (1) Time-dependent changes such as political, economic, and cultural changes occurring over time and require decision-makers to consider the dynamics of decisions; and (2) Sudden changes and events such as diseases and natural disasters disrupting SCs. This paper investigates the impact of both changes on the decisions of a green supply chain. Moreover, these challenges may affect the organizations’ activities in the market and arouse a conflict in the members’ goals, leading to competition among members. This paper studies a game model for a dynamic–stochastic supply channel SC with one manufacturer and one retailer, where two types of products (green and non-green) are sold. In this study, two models are dynamically considered: The first model without demand disruptions and the second model with demand disruptions. Finally, the results are compared. On the other hand, due to environmental goals and to survive manufacturers under disruption, the government supports manufacturers in producing green products. Implementing this cooperation, the manufacturer also invests more in improving the greening level of green products, thereby enhancing its demand. Regarding numerous disruptions common in the automotive industry, this case study is conducted on the automotive supply chain to evaluate the models, and the results are presented in the form of numerical examples. Finally, to extract managerial insights, sensitivity analysis is performed on the main parameters of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali, S. M., Rahman, M. H., Tumpa, T. J., Rifat, A. A. M., & Paul, S. K. (2018). Examining price and service competition among retailers in a supply chain under potential demand disruption. Journal of Retailing and Consumer Services, 40, 40–47.

    Google Scholar 

  • Aslani, A., & Heydari, J. (2019). Transshipment contract for coordination of a green dual-channel supply chain under channel disruption. Journal of Cleaner Production, 223, 596–609.

    Google Scholar 

  • Basiri, Z., & Heydari, J. (2017). A mathematical model for green supply chain coordination with substitutable products. Journal of Cleaner Production, 145, 232–249.

    Google Scholar 

  • Bischi, G. I., & Naimzada, A. (2000). Global analysis of a dynamic duopoly game with bounded rationality. In Advances in dynamic games and applications (pp. 361–385). Birkhäuser.

  • Boyd, J. (2020). COVID-19 survey: Impacts on global supply chains. Institute for Supply Management. Updated March, 11, p. 2020.

  • Cao, E., Wan, C., & Lai, M. (2013). Coordination of a supply chain with one manufacturer and multiple competing retailers under simultaneous demand and cost disruptions. International Journal of Production Economics, 141(1), 425–433.

    Google Scholar 

  • Cavalli, F., & Naimzada, A. (2014). A Cournot duopoly game with heterogeneous players: Nonlinear dynamics of the gradient rule versus local monopolistic approach. Applied Mathematics and Computation, 249, 382–388.

    Google Scholar 

  • de Salvo Junior, O., & de Almeida, F. G. V. (2019). Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption. Applied Energy, 241, 98–112.

    Google Scholar 

  • Ding, Z., Li, Q., Jiang, S., & Wang, X. (2015). Dynamics in a Cournot investment game with heterogeneous players. Applied Mathematics and Computation, 256, 939–950.

    Google Scholar 

  • Elsadany, A. A., & Awad, A. M. (2019). Dynamics and chaos control of a duopolistic Bertrand competitions under environmental taxes. Annals of Operations Research, 274(1), 211–240.

    Google Scholar 

  • Erickson, G. M. (2011). A differential game model of the marketing-operations interface. European Journal of Operational Research, 211(2), 394–402.

    Google Scholar 

  • Eurobarometer, S. (2008). Attitudes of European citizens towards the environment. European Commission 295.

  • Fander, A., & Yaghoubi, S. (2021). Impact of fuel-efficient technology on automotive and fuel supply chain under government intervention: A case study. Applied Mathematical Modelling, 97, 771–802.

    Google Scholar 

  • Giri, B. C., & Sarker, B. R. (2016). Coordinating a two-echelon supply chain under production disruption when retailers compete with price and service level. Operational Research, 16(1), 71–88.

    Google Scholar 

  • Giri, R. N., Mondal, S. K., & Maiti, M. (2019). Government intervention on a competing supply chain with two green manufacturers and a retailer. Computers & Industrial Engineering, 128, 104–121.

    Google Scholar 

  • Guo, J., He, L., & Gen, M. (2019). Optimal strategies for the closed-loop supply chain with the consideration of supply disruption and subsidy policy. Computers & Industrial Engineering, 128, 886–893.

    Google Scholar 

  • Hadi, T., Chaharsooghi, S. K., Sheikhmohammady, M., & Hafezalkotob, A. (2020). Pricing strategy for a green supply chain with hybrid production modes under government intervention. Journal of Cleaner Production, 268, 121945.

    Google Scholar 

  • Hafezalkotob, A. (2015). Competition of two green and regular supply chains under environmental protection and revenue seeking policies of government. Computers & Industrial Engineering, 82, 103–114.

    Google Scholar 

  • Hafezalkotob, A. (2018). Direct and indirect intervention schemas of government in the competition between green and non-green supply chains. Journal of Cleaner Production, 170, 753–772.

    Google Scholar 

  • Hosseini-Motlagh, S. M., Nouri-Harzvili, M., Choi, T. M., & Ebrahimi, S. (2019). Reverse supply chain systems optimization with dual channel and demand disruptions: Sustainability, CSR investment and pricing coordination. Information Sciences, 503, 606–634.

    Google Scholar 

  • Hou, J., Zeng, A. Z., & Zhao, L. (2010). Coordination with a backup supplier through buy-back contract under supply disruption. Transportation Research Part e: Logistics and Transportation Review, 46(6), 881–895.

    Google Scholar 

  • Huang, Z. (2020). Stochastic differential game in the closed-loop supply chain with fairness concern retailer. Sustainability, 12(8), 3289.

    Google Scholar 

  • Jiang, K., Merrill, R., You, D., Pan, P., & Li, Z. (2019). Optimal control for transboundary pollution under ecological compensation: A stochastic differential game approach. Journal of Cleaner Production, 241, 118391.

    Google Scholar 

  • Kicsiny, R. (2019). Differential game model with discretized solution for distributing heat produced by solar heating systems. Renewable Energy, 140, 330–340.

    Google Scholar 

  • Li, T., & Ma, J. (2014). Complexity analysis of the dual-channel supply chain model with delay decision. Nonlinear Dynamics, 78(4), 2617–2626.

    Google Scholar 

  • Liu, C., & Chen, W. (2019). Decision making in green supply chains under the impact of the stochastic and multiple-variable dependent reference point. Transportation Research Part E: Logistics and Transportation Review, 128, 443–469.

    Google Scholar 

  • Liu, C., Huang, W., & Yang, C. (2017). The evolutionary dynamics of China’s electric vehicle industry–Taxes vs. subsidies. Computers & Industrial Engineering, 113, 103–122.

    Google Scholar 

  • Liu, Z., & Jianguo, Z. (2017). Research on dynamic game model of enterprise green technology innovation driving force. Journal of Artificial Intelligence Practice, 2(1), 13–19.

    Google Scholar 

  • Lou, W., & Ma, J. (2018). Complexity of sales effort and carbon emission reduction effort in a two-parallel household appliance supply chain model. Applied Mathematical Modelling, 64, 398–425.

    Google Scholar 

  • Ma, H., Lou, G., Fan, T., Chan, H. K., & Chung, S. H. (2021a). Conventional automotive supply chains under China’s dual-credit policy: Fuel economy, production and coordination. Energy Policy, 151, 112166.

    Google Scholar 

  • Ma, S., He, Y., Gu, R., & Li, S. (2021b). Sustainable supply chain management considering technology investments and government intervention. Transportation Research Part e: Logistics and Transportation Review, 149, 102290.

    Google Scholar 

  • Mahmoudi, R., & Rasti-Barzoki, M. (2018). Sustainable supply chains under government intervention with a real-world case study: An evolutionary game theoretic approach. Computers & Industrial Engineering, 116, 130–143.

    Google Scholar 

  • Modak, N. M., & Kelle, P. (2019). Managing a dual-channel supply chain under price and delivery-time dependent stochastic demand. European Journal of Operational Research, 272(1), 147–161.

    Google Scholar 

  • Rahmani, K., & Yavari, M. (2019). Pricing policies for a dual-channel green supply chain under demand disruptions. Computers & Industrial Engineering, 127, 493–510.

    Google Scholar 

  • Sajid, Z. (2021). A dynamic risk assessment model to assess the impact of the coronavirus (COVID-19) on the sustainability of the biomass supply chain: A case study of a US biofuel industry. Renewable and Sustainable Energy Reviews, 151, 111574.

    Google Scholar 

  • Shen, L., Olfat, L., Govindan, K., Khodaverdi, R., & Diabat, A. (2013). A fuzzy multi criteria approach for evaluating green supplier’s performance in green supply chain with linguistic preferences. Resources, Conservation and Recycling, 74, 170–179.

    Google Scholar 

  • Sheu, J. B., & Chen, Y. J. (2012). Impact of government financial intervention on competition among green supply chains. International Journal of Production Economics, 138(1), 201–213.

    Google Scholar 

  • Sinayi, M., & Rasti-Barzoki, M. (2018). A game theoretic approach for pricing, greening, and social welfare policies in a supply chain with government intervention. Journal of Cleaner Production, 196, 1443–1458.

    Google Scholar 

  • Srivastava, S. K. (2007). Green supply-chain management: A state-of-the-art literature review. International Journal of Management Reviews, 9(1), 53–80.

    Google Scholar 

  • Tang, C., Yang, H., Cao, E., & Lai, K. K. (2018). Channel competition and coordination of a dual-channel supply chain with demand and cost disruptions. Applied Economics, 50(46), 4999–5016.

    Google Scholar 

  • Wei, C., & Luo, C. (2020). A differential game design of watershed pollution management under ecological compensation criterion. Journal of Cleaner Production, 274, 122320.

    Google Scholar 

  • Wu, C. H. (2021). A dynamic perspective of government intervention in a competitive closed-loop supply chain. European Journal of Operational Research, 294(1), 122–137.

    Google Scholar 

  • Xiao, L., Liu, J., & Ge, J. (2021). Dynamic game in agriculture and industry cross-sectoral water pollution governance in developing countries. Agricultural Water Management, 243, 106417.

    Google Scholar 

  • Xiao, T., & Qi, X. (2008). Price competition, cost and demand disruptions and coordination of a supply chain with one manufacturer and two competing retailers. Omega, 36(5), 741–753.

    Google Scholar 

  • Xu, C. Q., Zhao, D. Z., Yuan, B. Y., & He, L. F. (2016). Differential game model on joint carbon emission reduction and low-carbon promotion in supply chains. J of Management Sciences in China, 19(2), 53–65.

    Google Scholar 

  • Xu, T., & Ma, J. (2021). Feed-in tariff or tax-rebate regulation? Dynamic decision model for the solar photovoltaic supply chain. Applied Mathematical Modelling, 89, 1106–1123.

    Google Scholar 

  • Yang, D., & Xiao, T. (2017). Pricing and green level decisions of a green supply chain with governmental interventions under fuzzy uncertainties. Journal of Cleaner Production, 149, 1174–1187.

    Google Scholar 

  • Yang, J., Xie, H., Yu, G., & Liu, M. (2021). Antecedents and consequences of supply chain risk management capabilities: An investigation in the post-coronavirus crisis. International Journal of Production Research, 59(5), 1573–1585.

    Google Scholar 

  • Zaefarian, T., Andabili, M., Momeni, H., & Najafi, S. E. (2018). Iran auto market price segmentation and car ranking in segments using a hybrid DEMATEL-two-step clustering-TOPSIS approaches and two-step weighting based on Shannon’s entropy. Industrial Management Study, 16(50), 159–192.

    Google Scholar 

  • Zhang, M., Bell, P. C., Cai, G. G., & Chen, X. (2010). Optimal fences and joint price and inventory decisions in distinct markets with demand leakage. European Journal of Operational Research, 204(3), 589–596.

    Google Scholar 

  • Zhang, X. (2014). Reference-dependent electric vehicle production strategy considering subsidies and consumer trade-offs. Energy Policy, 67, 422–430.

    Google Scholar 

  • Zhang, X., & Yousaf, H. A. U. (2020). Green supply chain coordination considering government intervention, green investment, and customer green preferences in the petroleum industry. Journal of Cleaner Production, 246, 118984.

    Google Scholar 

  • Zhang, W. G., Fu, J., Li, H., & Xu, W. (2012). Coordination of supply chain with a revenue-sharing contract under demand disruptions when retailers compete. International Journal of Production Economics, 138(1), 68–75.

    Google Scholar 

  • Zhang, Y., & Hansen, M. (2008). Real-time intermodal substitution: Strategy for airline recovery from schedule perturbation and for mitigation of airport congestion. Transportation Research Record, 2052(1), 90–99.

    Google Scholar 

  • Zhao, J. H., Zeng, D. L., Che, L. P., Zhou, T. W., & Hu, J. Y. (2020a). Research on the profit change of new energy vehicle closed-loop supply chain members based on government subsidies. Environmental Technology & Innovation, 19, 100937.

    Google Scholar 

  • Zhao, T., Xu, X., Chen, Y., Liang, L., Yu, Y., & Wang, K. (2020b). Coordination of a fashion supply chain with demand disruptions. Transportation Research Part e: Logistics and Transportation Review, 134, 101838.

    Google Scholar 

  • Zu, Y., Chen, L., & Fan, Y. (2018). Research on low-carbon strategies in supply chain with environmental regulations based on differential game. Journal of Cleaner Production, 177, 527–546.

    Google Scholar 

  • Zhou, Y., & Ye, X. (2018). Differential game model of joint emission reduction strategies and contract design in a dual-channel supply chain. Journal of Cleaner Production, 190, 592–607.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Yaghoubi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Proposition 1

The Jacobian matrix is introduced to find the system’s stable region for supply chain members to adjust their decisions. The Jacobian matrix of function is:

$$ \left( {\begin{array}{*{20}c} {J_{11} } & {J_{12} } & {J_{13} } & {J_{14} } \\ {J_{21} } & {J_{22} } & {J_{23} } & {J_{24} } \\ {J_{31} } & {J_{32} } & {J_{33} } & 0 \\ 0 & 0 & 0 & {J_{44} } \\ \end{array} } \right) $$
(A1)

The corresponding characteristic equation is as Eq. (A1):

$$ F\left( \lambda \right) = \eta_{0} \lambda^{4} + \eta_{1} \lambda^{3} + \eta_{2} \lambda^{2} + \eta_{3} \lambda^{1} + \eta_{4} \lambda^{0} $$
(A2)

where:

$$ \left\{ {\begin{array}{*{20}l} {\eta_{0} = 1\eta_{0} = 1} \hfill \\ {\eta_{1} = - \left( {J_{11} + J_{22} + J_{33} - J_{44} } \right)} \hfill \\ {\eta_{2} = { }J_{11} J_{22} - J_{12} { }J_{21} - J_{13} { }J_{31} - J_{23} { }J_{32} + { }J_{33} \left( {J_{11} + J_{22} + J_{44} } \right) + J_{44} \left( {J_{22} + J_{11} } \right)} \hfill \\ {\eta_{3} = J_{44} \left( {J_{12} { }J_{21} - J_{11} J_{22} + J_{13} { }J_{31} + J_{23} { }J_{32} - J_{33} \left( {J_{11} + J_{22} { }} \right)} \right)} \hfill \\ {\quad \quad + { }J_{31} \left( {J_{13} { }J_{22} - J_{12} { }J_{23} } \right) + { }J_{32} \left( {J_{11} { }J_{23} - J_{13} { }J_{21} } \right) + J_{33} \left( {J_{12} { }J_{21} - J_{11} { }J_{22} } \right)} \hfill \\ {\eta_{4} = { }J_{44} \left( {J_{31} \left( {J_{12} { }J_{23} - J_{13} { }J_{22} } \right) + { }J_{32} \left( {J_{13} { }J_{21} - J_{11} { }J_{23} { }} \right) + J_{33} \left( {J_{11} J_{22} - J_{12} { }J_{21} } \right)} \right)} \hfill \\ \end{array} } \right. $$
(A3)

According to the Jury test condition, the sufficient conditions for stability of \(F\left(\lambda \right)\) are as Eq. (A4):

$$ \left[ {\begin{array}{*{20}l} {\left| {\eta_{4} } \right| < \eta_{0} } \hfill \\ {\left. {F\left( \lambda \right)} \right|_{\lambda = 1} > 0} \hfill \\ {\left. {F\left( \lambda \right)} \right|_{\lambda = - 1} > 0} \hfill \\ {\left| {b_{3} } \right| > \left| {b_{0} } \right|} \hfill \\ {\left| {c_{2} } \right| > \left| {c_{0} } \right|} \hfill \\ \end{array} } \right. $$
(A4)

Note that, based on the Jury’s stability test, when a system reaches stability, the above conditions must be met.

$$ \left[ {\begin{array}{*{20}l} {\left| {\eta_{n} } \right| < \eta_{0} } \hfill \\ {\left. {F\left( \lambda \right)} \right|_{\lambda = 1} > 0} \hfill \\ {\left. {F\left( \lambda \right)} \right|_{\lambda = - 1} > 0} \hfill \\ {\left| {b_{n - 1} } \right| > \left| {b_{0} } \right|} \hfill \\ {\left| {c_{n - 2} } \right| > \left| {c_{0} } \right|} \hfill \\ \end{array} } \right. $$
(A5)

Since,

$$ b_{k} = \left[ {\begin{array}{*{20}c} {\eta_{n} } & {\eta_{n - 1 - k} } \\ {\eta_{0} } & {\eta_{k + 1} } \\ \end{array} } \right], k = 0,1,2, \ldots ,n - 1 $$
(A6)
$$ c_{k} = \left[ {\begin{array}{*{20}c} {b_{n - 1} } & {b_{n - 2 - k} } \\ {b_{0} } & {b_{k + 1} } \\ \end{array} } \right], k = 0,1,2, \ldots ,n - 2 $$
(A7)

The values of Jacobian matrix for the Dynamic–Stochastic Non-Disruption Model:

$$ \begin{aligned} \overline{{J_{11} }} & = 1 - 2\omega_{1} P_{1} \left( t \right)\left( {\varrho_{1} + \vartheta_{1} } \right) \\ & \quad + \omega_{1} \left( {\tilde{a}_{1} } \right. \\ & \quad + \frac{1}{2}\left( {l_{1} - 4P_{1} \left( t \right)\left( {\varrho_{1} + \vartheta_{1} } \right) + 2P_{2} \left( t \right)\left( {\vartheta_{1} + \vartheta_{2} } \right) + u_{1} } \right. - 2\sigma \left( t \right)v_{1} \\ & \quad \left. {\left. { + 2\left( {\varrho_{1} + \vartheta_{1} } \right)W_{1} \left( t \right) - 2\vartheta_{2} W_{2} \left( t \right) + 2\gamma_{1} \zeta \left( t \right)} \right)} \right) \\ \end{aligned} $$
(A8)
$$ \overline{{J_{12} }} = \omega_{1} P_{1} \left( t \right)\left( {\vartheta_{1} + \vartheta_{2} } \right) $$
(A9)
$$ \overline{{J_{13} }} = - \omega_{1} \upsilon_{1} P_{1} \left( t \right) $$
(A10)
$$ \overline{{J_{14} }} = \gamma_{1} \omega_{1} P_{1} \left( t \right) $$
(A11)
$$ \overline{{J_{21} }} = \omega_{2} P_{2} \left( t \right)\left( {\vartheta_{1} + \vartheta_{2} } \right) $$
(A12)
$$ \begin{aligned} \overline{{J_{22} }} & = 1 - 2\omega_{2} P_{2} \left( t \right)\left( {\varrho_{2} + \vartheta_{2} } \right) \\ & \quad + \omega_{2} \left( {\tilde{a}_{2} } \right. \\ & \quad + \frac{1}{2}\left( {l_{2} + 2P_{1} \left( t \right)\left( {\vartheta_{1} + \vartheta_{2} } \right) + u_{2} + 2\sigma \left( t \right)v_{2} - 2\vartheta_{1} W_{1} \left( t \right)} \right. \\ & \quad \left. {\left. { + 2\left( {\varrho_{2} + \vartheta_{2} } \right)\left( {W_{2} \left( t \right) - 2P_{2} \left( t \right)} \right) - 2\omega_{2} \zeta \left( t \right)} \right)} \right) \\ \end{aligned} $$
(A13)
$$ \overline{{J_{23} }} = \omega_{2} \upsilon_{2} P_{2} \left( t \right) $$
(A14)
$$ \overline{{J_{24} }} = - \gamma_{2} \omega_{2} P_{2} \left( t \right) $$
(A15)
$$ \overline{{J_{31} }} = - \omega_{3} \upsilon_{1} \sigma \left( t \right) $$
(A16)
$$ \overline{{J_{32} }} = \omega_{3} \upsilon_{2} \sigma \left( t \right) $$
(A17)
$$ \overline{{J_{33} }} = 1 - k\omega_{3} \sigma \left( t \right) + \omega_{3} \left( { - k\sigma \left( t \right) - v_{1} \left( {P_{1} \left( t \right) - W_{1} \left( t \right)} \right) + v_{2} \left( {P_{2} \left( t \right) - W_{2} \left( t \right)} \right)} \right) $$
(A18)
$$ \overline{{J_{44} }} = 1 - h\omega_{4} \zeta \left( t \right) + \omega_{4} \left( {\gamma_{1} \left( {W_{1} \left( t \right) - C_{1} \left( t \right)} \right) - \gamma_{2} \left( {W_{2} \left( t \right) - C_{2} \left( t \right)} \right) - h\zeta \left( t \right)} \right) $$
(A19)

Appendix B: Proof of Theorem 3.1

The concavity of the total profit function in decentralized mode is examined by its corresponding Hessian matrix, \(H\).

$$ H\left( {P_{1} , P_{2} ,\sigma } \right) = \left[ {\begin{array}{*{20}c} { - 2\left( {\varrho_{1} + \vartheta_{1} } \right)} & {\vartheta_{1} + \vartheta_{2} } & { - \upsilon_{1} } \\ {\vartheta_{1} + \vartheta_{2} } & { - 2\left( {\varrho_{2} + \vartheta_{2} } \right)} & {\upsilon_{2} } \\ { - \upsilon_{1} } & {\upsilon_{2} } & { - k} \\ \end{array} } \right] $$

Owing to the positive \(\varrho_{2}\) and \(\vartheta_{2}\), it can be shown that the first minor determinant \(\big({- 2\big( {\varrho_{2} + \vartheta_{2}}\big)}\big)\) is negative. Moreover, the second minor determinant \(\big( {4\varrho_{2}\vartheta_{1} - \big( {\vartheta_{1} - \vartheta_{2}} \big)^{2} + 4\varrho_{1} \big( {\varrho_{2} + \vartheta_{2}} \big)} \big)\) is positive, in case \(\big( {\vartheta_{1} - \vartheta_{2} } \big)^{2} < 4\varrho_{2} \vartheta_{1} + 4\varrho_{1} \big( {\varrho_{2} + \vartheta_{2} } \big)\). Furthermore, the third minor determinant \(\Big( {k\big( {\big( {\vartheta_{1} - \vartheta_{2} } \big)^{2} - 4\varrho_{2} \vartheta_{1} - 4\varrho_{1} \big( {\varrho_{2} + \vartheta_{2} } \big)} \big) + 2\big( {\varrho_{2} + \vartheta_{2} } \big)v_{1}^{2} - 2\big( {\vartheta_{1} + \vartheta_{2} } \big)\upsilon_{1} \upsilon_{2} + 2\big( {\varrho_{1} + \vartheta_{1} } \big)v_{2}^{2} } \Big)\) is negative, in case \(\big( {\varrho_{2} + \vartheta_{2} } \big)v_{1}^{2} + \big( {\varrho_{1} + \vartheta_{1} } \big)v_{2}^{2} < \big( {\vartheta_{1} + \vartheta_{2} } \big)\upsilon_{1} \upsilon_{2}\).□

Appendix C: The values of substituted parameters

$$ T_{1} = - \left( {k\left( {8\varrho_{2} \vartheta_{1} - 2\left( {\vartheta_{1} - \vartheta_{2} } \right)^{2} + 8\varrho_{1} \left( {\varrho_{2} + \vartheta_{2} } \right)} \right) - 4\left( {\varrho_{2} + \vartheta_{2} } \right)\upsilon_{1}^{2} + 4\left( {\vartheta_{1} + \vartheta_{2} } \right)\upsilon_{1} \upsilon_{2} - 4\left( {\varrho_{1} + \vartheta_{1} } \right)\upsilon_{2}^{2} } \right) $$
(C1)
$$ \begin{aligned} T_{2} & = \upsilon_{1} \upsilon_{2} \left( {2a_{2} + l_{2} + u_{2} - 2W_{1} \left( {2\vartheta_{1} + \vartheta_{2} } \right) - 2W_{2} \left( {\varrho_{2} + \vartheta_{2} } \right)} \right) \\ & \quad + v_{2}^{2} \left( {2a_{1} + l_{1} + u_{1} + 2W_{1} \left( {\varrho_{1} + \vartheta_{1} } \right) + 2\vartheta_{1} W_{2} } \right) \\ & \quad - k\left( {l_{2} \vartheta_{2} + 2l_{1} \left( {\varrho_{2} + \vartheta_{2} } \right) + 2a_{2} \left( {\vartheta_{1} + \vartheta_{2} } \right) + 2\vartheta_{2} u_{1} + \vartheta_{2} u_{2} + \vartheta_{1} \left( {l_{2} + u_{2} } \right)} \right. \\ & \quad + 2W_{1} \left( {2\varrho_{1} \vartheta_{2} - \vartheta_{1}^{2} + \vartheta_{1} \vartheta_{2} } \right) + 2\varrho_{2} \left( {u_{1} + 2\left( {\varrho_{1} + \vartheta_{1} } \right)W_{1} + \left( {\vartheta_{1} - \vartheta_{2} } \right)W_{2} } \right) \\ & \quad \left. { + 2\vartheta_{2} W_{2} \left( {\vartheta_{1} - \vartheta_{2} } \right) + 2\zeta \left( {2\gamma_{1} \left( {\varrho_{2} + \vartheta_{2} } \right) - \gamma_{2} \left( {\vartheta_{1} + \vartheta_{2} } \right)} \right)} \right) \\ \end{aligned} $$
(C2)
$$ \begin{aligned} T_{3} & = \upsilon_{1} \upsilon_{2} \left( {2a_{1} + l_{1} + u_{1} - 2W_{1} \left( {\varrho_{1} + \vartheta_{1} } \right) - 2W_{2} \left( {\vartheta_{1} + 2\vartheta_{2} } \right)} \right) + 4v_{2}^{2} W_{2} \left( {\varrho_{1} + \vartheta_{1} } \right) \\ & \quad + 2\upsilon_{1} \left( {\gamma_{1} \upsilon_{2} - \gamma_{2} \upsilon_{1} } \right)\zeta \\ & \quad - k\left( {2l_{2} \left( {\varrho_{1} + \vartheta_{1} } \right) + \left( {2a_{1} + l_{1} } \right)\left( {\vartheta_{1} + \vartheta_{2} } \right) + \vartheta_{2} u_{1} + 2\varrho_{1} u_{2} } \right. \\ & \quad + 2W_{1} \left( {\varrho_{1} \vartheta_{2} - \vartheta_{1}^{2} } \right) + W_{2} \left( {4\varrho_{1} \left( {\varrho_{2} + \vartheta_{2} } \right) - 2\vartheta_{2}^{2} } \right) \\ & \quad + 2\zeta \left( {\gamma_{1} \vartheta_{2} - 2\gamma_{2} \varrho_{1} } \right) \\ & \quad + \vartheta_{1} \left( {u_{1} + } \right. \\ & \quad \left. {\left. { + 2\left( {u_{2} - \varrho_{1} W_{1} + 2\varrho_{2} W_{2} + \vartheta_{2} \left( {W_{1} + W_{2} } \right) + \gamma_{1} \zeta - 2\gamma_{2} \zeta } \right)} \right)} \right) \\ \end{aligned} $$
(C3)
$$ \begin{aligned} T_{4} & = \upsilon_{2} \left( {4a_{2} \varrho_{1} + 2l_{2} \varrho_{1} + 4a_{2} \vartheta_{1} + l_{1} \vartheta_{1} + 2l_{2} \vartheta_{1} + l_{1} \vartheta_{2} + 2a_{1} \left( {\vartheta_{1} + \vartheta_{2} } \right)} \right. \\ & \quad \left. { + \vartheta_{1} u_{1} + \vartheta_{2} u_{1} + 2\varrho_{1} u_{2} + 2\vartheta_{1} u_{2} } \right) + 4\varrho_{1} \varrho_{2} \upsilon_{1} W_{1} + 4\varrho_{2} \vartheta_{1} \upsilon_{1} W_{1} \\ & \quad + 4\varrho_{2} \vartheta_{1} \upsilon_{1} W_{1} + 4\varrho_{1} \vartheta_{2} \upsilon_{1} W_{1} + 2\vartheta_{1} \vartheta_{2} \upsilon_{1} W_{1} - 2\vartheta_{2}^{2} \upsilon_{1} W_{1} - 2\varrho_{1} \vartheta_{1} \upsilon_{2} W_{1} \\ & \quad - 2\vartheta_{1}^{2} \upsilon_{2} W_{1} + 2\varrho_{1} \vartheta_{2} \upsilon_{2} W_{1} + 2\vartheta_{1} \vartheta_{2} \upsilon_{2} W_{1} - 2\varrho_{2} \vartheta_{1} \upsilon_{1} W_{2} \\ & \quad + 2\varrho_{2} \vartheta_{2} \upsilon_{1} W_{2} - 2\vartheta_{1} \vartheta_{2} \upsilon_{1} W_{2} + 2\vartheta_{2}^{2} \upsilon_{1} W_{2} - 4\varrho_{1} \varrho_{2} \upsilon_{2} W_{2} \\ & \quad - 4\varrho_{2} \vartheta_{1} \upsilon_{2} W_{2} + 2\vartheta_{1}^{2} \upsilon_{2} W_{2} - 4\varrho_{1} \vartheta_{2} \upsilon_{2} W_{2} - 2\vartheta_{1} \vartheta_{2} \upsilon_{2} W_{2} \\ & \quad + 2\zeta \left( { - 2\gamma_{1} \left( {\varrho_{2} + \vartheta_{2} } \right)\upsilon_{1} + \gamma_{2} \left( {\vartheta_{1} + \vartheta_{2} } \right)\upsilon_{1} - 2\gamma_{2} \left( {\varrho_{1} + \vartheta_{1} } \right)\upsilon_{2} } \right. \\ & \quad \left. { + \gamma_{1} \left( {\vartheta_{1} + \vartheta_{2} } \right)\upsilon_{2} } \right) \\ \end{aligned} $$
(C4)
$$ \begin{aligned} T_{5} & = C_{2} \left( {\gamma_{2} \left( {\left( {\varrho_{2} + \vartheta_{2} } \right)\left( {2k\varrho_{1} - \upsilon_{1}^{2} } \right) + k\vartheta_{1} \left( {2\varrho_{2} - \vartheta_{1} + \vartheta_{2} } \right) + \vartheta_{1} \upsilon_{1} \upsilon_{2} } \right)} \right. \\ & \quad + \gamma_{1} \left. {\left( {k\left( {\vartheta_{1} - \vartheta_{2} } \right)\left( {\varrho_{2} + \vartheta_{2} } \right) + \upsilon_{2} \left( {\left( {\varrho_{2} + \vartheta_{2} } \right)\upsilon_{1} - \vartheta_{1} \upsilon_{2} } \right)} \right)} \right) \\ & \quad + W_{1} \left( { - \gamma_{2} k\left( {\varrho_{1} + \vartheta_{1} } \right)\left( {\vartheta_{1} - \vartheta_{2} } \right)} \right. \\ & \quad + \gamma_{1} k\left( {2\varrho_{2} \vartheta_{1} + \left( {\vartheta_{1} - \vartheta_{2} } \right)\vartheta_{2} + 2\varrho_{1} \left( {\varrho_{2} + \vartheta_{2} } \right)} \right) \\ & \quad \left. { + \gamma_{1} \upsilon_{2} \left( {\vartheta_{2} \upsilon_{1} - \left( {\varrho_{1} + \vartheta_{1} } \right)\upsilon_{2} } \right) + \gamma_{2} \upsilon_{1} \left( {\left( {\varrho_{1} + \vartheta_{1} } \right)\upsilon_{2} - \vartheta_{2} \upsilon_{1} } \right)} \right) \\ & \quad - (\gamma_{2} \left( {2k\varrho_{1} \left( {\varrho_{2} + \vartheta_{2} } \right) + k\vartheta_{1} \left( {2\varrho_{2} - \vartheta_{1} + \vartheta_{2} } \right) - \left( {\varrho_{2} + \vartheta_{2} } \right)v_{1}^{2} + \vartheta_{1} \upsilon_{1} \upsilon_{2} } \right) \\ & \quad + \gamma_{1} W_{2} \left( {k\left( {\vartheta_{1} - \vartheta_{2} } \right)\left( {\varrho_{2} + \vartheta_{2} } \right) + \upsilon_{2} \left( {\left( {\varrho_{2} + \vartheta_{2} } \right)\upsilon_{1} - \vartheta_{1} \upsilon_{2} } \right)} \right) \\ \end{aligned} $$
(C5)
$$ \begin{aligned} T_{6} & = - \upsilon_{1} \upsilon_{2} \left( {\widetilde{{\overline{a}}}_{2} - l_{2} - u_{2} } \right) - v_{2}^{2} \left( {2\widetilde{{\overline{a}}}_{1} + l_{1} + u_{1} } \right) \\ & \quad - 2\overline{W}_{1} - 2\overline{W}_{1} \left( {2v_{1}^{2} \left( {l_{1} \varrho_{2} + \vartheta_{2} } \right) + v_{2}^{2} \left( {\varrho_{1} + \vartheta_{1} } \right)} \right) \\ & \quad + \upsilon_{1} \upsilon_{2} \left( {2\overline{W}_{1} \left( {2\vartheta_{1} + \vartheta_{2} } \right) + 2\overline{W}_{2} \left( {l_{1} \varrho_{2} + \vartheta_{2} } \right)} \right) - 2\vartheta_{1} v_{2}^{2} \overline{W}_{2} \\ & \quad - 2\vartheta_{1} v_{2}^{2} \overline{W}_{2} + 2\upsilon_{2} \zeta \left( {\gamma_{2} \upsilon_{1} - \gamma_{1} \upsilon_{2} } \right) \\ & \quad + k\left( {l_{2} \vartheta_{2} + 2l_{1} \left( {\varrho_{2} + \vartheta_{2} } \right) + 2\widetilde{{\overline{a}}}_{2} \left( {\vartheta_{1} + \vartheta_{2} } \right) + 2u_{1} \left( {l_{1} \varrho_{2} + \vartheta_{2} } \right)} \right. \\ & \quad + \vartheta_{2} u_{2} + \vartheta_{1} \left( {l_{2} + u_{2} } \right) \\ & \quad - \Phi \lambda_{0} \xi T\Psi \left( {\vartheta_{2} \left( {2b_{1} \left( {l_{1} + u_{1} } \right) + b_{2} \left( {l_{2} + u_{2} } \right)} \right) + 2b_{1} l_{1} \varrho_{2} \left( {1 + u_{1} } \right)} \right. \\ & \quad + b_{2} \vartheta_{1} \left( {l_{2} + u_{2} } \right) + 2\overline{W}_{1} \left( {2\varrho_{1} \left( {l_{1} \varrho_{2} + \vartheta_{2} } \right) + \vartheta_{1} \left( {2l_{1} \varrho_{2} + \vartheta_{2} } \right)} \right) \\ & \quad + 2\overline{W}_{2} \left( {l_{1} \varrho_{2} \left( {\vartheta_{1} - \vartheta_{2} } \right) + \vartheta_{2} \left( {\vartheta_{1} - \vartheta_{2} } \right)} \right) \\ & \quad \left. { + 2\zeta \left( {2\gamma_{1} \left( {l_{1} \varrho_{2} + \vartheta_{2} } \right) - \gamma_{2} \left( {\vartheta_{1} + \vartheta_{2} } \right)} \right)} \right) \\ \end{aligned} $$
(C6)
$$ \begin{aligned} T_{7} & = - l_{2} v_{1}^{2} \left( {2\widetilde{{\overline{a}}}_{2} + l_{2} + u_{2} } \right) \\ & \quad - \upsilon_{1} \upsilon_{2} \left( {2\widetilde{{\overline{a}}}_{1} + l_{1} + u_{1} - 2\overline{W}_{1} \left( {\varrho_{1} + \vartheta_{1} } \right) + 2\overline{W}_{2} \left( {\vartheta_{1} + 2\vartheta_{2} } \right)} \right) \\ & \quad - 2\vartheta_{2} v_{1}^{2} \overline{W}_{1} - 2\overline{W}_{2} \left( {v_{1}^{2} \left( {\varrho_{2} + \vartheta_{2} } \right) + 2v_{2}^{2} \left( {\varrho_{1} + \vartheta_{1} } \right)} \right) \\ & \quad + 2\upsilon_{1} \zeta \left( {\gamma_{2} \upsilon_{1} - \gamma_{1} \upsilon_{2} } \right) \\ & \quad + k\left( {2l_{2} \left( {\varrho_{1} + \vartheta_{1} } \right) + \left( {2\widetilde{{\overline{a}}}_{1} + l_{1} } \right)\left( {\vartheta_{1} + \vartheta_{2} } \right) + \vartheta_{2} u_{1} + 2\varrho_{1} u_{2} } \right. \\ & \quad - \Phi \lambda_{0} \xi T\Psi \left( {2b_{2} \varrho_{1} \left( {l_{2} + u_{2} } \right) + b_{1} \vartheta_{2} \left( {l_{1} + u_{1} } \right)} \right) + 2\overline{W}_{1} \left( {\varrho_{1} \vartheta_{2} - \vartheta_{1}^{2} } \right) \\ & \quad + 2\overline{W}_{2} \left( {2\varrho_{1} \left( {\varrho_{2} + \vartheta_{2} } \right) - \vartheta_{1}^{2} } \right) + 2\zeta \left( {\gamma_{1} \vartheta_{2} - 2\gamma_{2} \varrho_{1} } \right) \\ & \quad + \vartheta_{1} \left( {u_{1} + 2u_{2} - \Phi \lambda_{0} \xi T\Psi \left( {b_{1} \left( {l_{1} + u_{1} } \right) + 2b_{2} \left( {l_{2} + u_{2} } \right)} \right)} \right. \\ & \quad \left. {\left. { + 2\left( { - \varrho_{1} \overline{W}_{1} + 2\varrho_{2} \overline{W}_{2} + \vartheta_{2} \left( {\overline{W}_{1} + \overline{W}_{2} } \right) + \zeta \left( {\gamma_{1} - 2\gamma_{2} } \right)} \right)} \right)} \right) \\ \end{aligned} $$
(C7)
$$ \begin{aligned} T_{8} & = 4\widetilde{{\overline{a}}}_{2} \varrho_{1} \upsilon_{2} + 2l_{2} \varrho_{1} \upsilon_{2} + 4\widetilde{{\overline{a}}}_{2} \vartheta_{1} \upsilon_{2} + \vartheta_{1} \upsilon_{2} \left( {l_{1} + 2l_{2} } \right) + l_{1} \vartheta_{2} \upsilon_{2} \\ & \quad + 2\widetilde{{\overline{a}}}_{1} \left( {\vartheta_{1} + \vartheta_{2} } \right)\upsilon_{2} + \vartheta_{1} u_{1} \upsilon_{2} + \vartheta_{2} u_{1} \upsilon_{2} + 2\varrho_{1} u_{2} \upsilon_{2} + 2\vartheta_{1} u_{2} \upsilon_{2} \\ & \quad + \Phi \lambda_{0} \xi T\Psi \left( {\upsilon_{1} \left( {2b_{1} l_{1} \varrho_{2} + b_{2} l_{2} \vartheta_{1} + \vartheta_{2} \left( {2b_{1} l_{1} + b_{2} l_{2} } \right)} \right.} \right. \\ & \quad \left. { + 2b_{1} u_{1} \left( {\varrho_{2} + \vartheta_{2} } \right) + b_{2} u_{2} \left( {\vartheta_{1} + \vartheta_{2} } \right)} \right) \\ & \quad \left. { - \upsilon_{2} \left( {b_{1} \left( {\vartheta_{1} + \vartheta_{2} } \right)\left( {l_{1} + u_{1} } \right) + 2b_{2} \left( {\varrho_{1} + \vartheta_{1} } \right)\left( {l_{2} + u_{2} } \right)} \right)} \right) \\ & \quad + \overline{W}_{1} \left( {4\varrho_{1} \varrho_{2} \upsilon_{1} + 4\varrho_{2} \vartheta_{1} \upsilon_{1} + 2\varrho_{1} \vartheta_{2} \left( {2\upsilon_{1} + \upsilon_{2} } \right) + 2\vartheta_{1} \vartheta_{2} \left( {\upsilon_{1} + \upsilon_{2} } \right)} \right. \\ & \quad \left. { - 2\vartheta_{2}^{2} \upsilon_{1} - 2\varrho_{1} \vartheta_{1} \upsilon_{2} - 2\vartheta_{1}^{2} \upsilon_{2} } \right) \\ & \quad + \overline{W}_{2} \left( {2\varrho_{2} \vartheta_{2} \upsilon_{1} - 2\varrho_{2} \vartheta_{1} \upsilon_{1} - 2\vartheta_{1} \vartheta_{2} \upsilon_{1} + 2\vartheta_{2}^{2} \upsilon_{1} - 4\varrho_{1} \varrho_{2} \upsilon_{2} } \right. \\ & \quad \left. { - 4\varrho_{2} \vartheta_{1} \upsilon_{2} + 2\vartheta_{1}^{2} \upsilon_{2} - 4\varrho_{1} \vartheta_{2} \upsilon_{2} - 2\vartheta_{1} \vartheta_{2} \upsilon_{2} } \right) \\ & \quad + 2\zeta \left( { - 2\gamma_{1} \left( {\varrho_{2} + \vartheta_{2} } \right)\upsilon_{1} + \gamma_{2} \left( {\vartheta_{1} + \vartheta_{2} } \right)\upsilon_{1} - 2\gamma_{2} \left( {\varrho_{1} + \vartheta_{1} } \right)\upsilon_{2} } \right. \\ & \quad \left. { + \gamma_{1} \left( {\vartheta_{1} + \vartheta_{2} } \right)\upsilon_{2} } \right) \\ \end{aligned} $$
(C8)
$$ \begin{aligned} T_{9} & = b_{1} \Phi \xi \lambda_{0} \Psi^{2} T\left( {l_{1} } \right. \\ & \quad \left. { + u_{1} } \right)\left( {\left( {4\gamma_{1} k\left( {\varrho_{2} + \vartheta_{2} } \right) - 2\gamma_{2} k\left( {\vartheta_{1} + \vartheta_{2} } \right) + 2\gamma_{2} \upsilon_{1} \upsilon_{2} - 2\gamma_{1} \upsilon_{2}^{2} } \right)} \right) \\ & \quad + 4\left( {\left( { - \gamma_{2} k\left( {\varrho_{1} + \vartheta_{1} } \right)\left( {\vartheta_{1} - \vartheta_{2} } \right)} \right.} \right. \\ &\quad + \gamma_{1} k\left( {2\varrho_{2} \vartheta_{1} + \left( {\vartheta_{1} - \vartheta_{2} } \right)\vartheta_{2} + 2\varrho_{1} \left( {\varrho_{2} + \vartheta_{2} } \right)} \right) + \gamma_{1} \upsilon_{2} (\vartheta_{2} \upsilon_{1} \\ & \quad \left. { - \left( {\varrho_{1} + \vartheta_{1} } \right)\upsilon_{2} } \right)\left. { + \gamma_{2} \upsilon_{1} \left( {\left( {\varrho_{1} + \vartheta_{1} } \right)\upsilon_{2} - \vartheta_{2} \upsilon_{1} } \right)} \right)\left( {\overline{C}_{1} - \overline{W}_{1} } \right) \\ & \quad - 4\left( {\left( {2\gamma_{2} k\varrho_{1} \left( {\varrho_{2} + \vartheta_{2} } \right) + \gamma_{1} k\left( {\vartheta_{1} - \vartheta_{2} } \right)\left( {\varrho_{2} + \vartheta_{2} } \right) + \gamma_{2} k\vartheta_{1} } \right)} \right.\left( {2\varrho_{2} } \right. \\ & \quad - \vartheta_{1} + \vartheta_{2} + \gamma_{1} \upsilon_{2} \left( {\left( {\varrho_{2} + \vartheta_{2} } \right)\upsilon_{1} - \vartheta_{1} \upsilon_{2} } \right) \\ & \quad \left. { + \gamma_{2} \upsilon_{1} \left( {\vartheta_{1} \upsilon_{2} - \left( {\varrho_{2} + \vartheta_{2} } \right)\upsilon_{1} } \right)} \right)\left( {\overline{C}_{2} - \overline{W}_{2} } \right) \\ \end{aligned} $$
(C9)
$$ \begin{aligned} T_{10} & = 2\gamma_{2}^{2} \left( {2k\left( {\varrho_{1} + \vartheta_{1} } \right) - \upsilon_{1}^{2} } \right) + \gamma_{1} \gamma_{2} \left( {\upsilon_{1} \upsilon_{2} - k\left( {\vartheta_{1} + \vartheta_{2} } \right)} \right) \\ & + \gamma_{1}^{2} \left( {2k\left( {\varrho_{2} + \vartheta_{2} } \right) - \upsilon_{2}^{2} } \right) \\ & + h\left( {k\left( {\left( {\vartheta_{1} - \vartheta_{2} } \right)^{2} - 4\varrho_{2} \vartheta_{1} - 4\varrho_{1} \left( {\varrho_{2} + \vartheta_{2} } \right)} \right) + 2\left( {\varrho_{2} + \vartheta_{2} } \right)\upsilon_{1}^{2} } \right. \\ & - 2\left( {\vartheta_{1} + \vartheta_{2} } \right)\upsilon_{1} \upsilon_{2} + 2\left( {\varrho_{1} + \vartheta_{1} } \right)\upsilon_{2}^{2} \\ \end{aligned} $$
(C10)
$$ \begin{aligned} T_{11} & = - \left( {\gamma_{2}^{2} k + h\left( {\upsilon_{2}^{2} - 2k\left( {\varrho_{2} + \vartheta_{2} } \right)} \right)} \right)\left( {2\overline{C}_{1}^{c} (\gamma_{1}^{2} k - hk\left( {2\widetilde{{\overline{a}}}_{1} + l_{1} + u_{1} } \right)} \right. \\ & \quad + h\left( {\upsilon_{1}^{2} - k\left( {\varrho_{1} + \vartheta_{1} } \right)} \right) - 2\overline{C}_{2}^{c} \left( {\gamma_{1} \gamma_{2} k - hk\vartheta_{2} + h\upsilon_{1} \upsilon_{2} } \right) \\ & \quad \left. { + b_{1} \Phi hk\lambda_{0} \Psi T\left( {l_{1} + u_{1} } \right)\xi } \right) \\ \end{aligned} $$
(C11)
$$ \begin{aligned} T_{12} & = \left( {2\overline{C}_{1} \left( {\gamma_{1} \gamma_{2} k - hk\vartheta_{1} + h\upsilon_{1} \upsilon_{2} } \right) - 2\overline{C}_{2}^{c} (\gamma_{2}^{2} k + h\left( {\upsilon_{2}^{2} - k\left( {\varrho_{2} + \vartheta_{2} } \right)} \right)} \right) \\ & \quad + hk\left( {2\widetilde{{\overline{a}}}_{2} + \left( {1 - b_{2} \Phi \lambda_{0} \Psi T\xi } \right)\left( {l_{2} + u_{2} } \right)} \right) \\ \end{aligned} $$
(C12)
$$ \begin{aligned} T_{13} & = \gamma_{1}^{2} kl_{2} + 4\overline{C}_{2}^{c} \gamma_{2}^{2} k\varrho_{1} - 2hkl_{2} \varrho_{1} + \overline{C}_{2}^{c} \left( {2\gamma_{1}^{2} \left( {k\varrho_{2} + k\vartheta_{2} - \upsilon_{2}^{2} } \right)} \right. \\ & \quad + 2\gamma_{2}^{2} \left( {k\vartheta_{1} - \upsilon_{1}^{2} } \right) + 2hk\left( {\vartheta_{2}^{2} - \vartheta_{1} \left( {\vartheta_{2} + 2\varrho_{2} } \right) - 2\varrho_{1} \left( {\varrho_{2} + \vartheta_{2} } \right)} \right) \\ & \quad \left. { + 2h\upsilon_{1}^{2} \left( {\varrho_{2} + \vartheta_{2} } \right) + 4h\upsilon_{2}^{2} \left( {\varrho_{1} + \vartheta_{1} } \right) + 4\gamma_{1} \gamma_{2} \left( {\upsilon_{1} \upsilon_{2} - k\vartheta_{2} } \right)} \right) \\ & \quad - hk\left( {2\widetilde{{\overline{a}}}_{1} \left( {\vartheta_{1} + \vartheta_{2} u_{1} \left( {\vartheta_{1} + \vartheta_{2} } \right)} \right) + l_{1} \left( {\vartheta_{1} + \vartheta_{2} } \right) + 2\vartheta_{1} \left( {l_{2} + u_{2} } \right)} \right. \\ & \quad \left. { + 2\varrho_{1} u_{2} } \right) + 2\overline{C}_{1}^{c} \left( {hk\left( {\left( {\varrho_{1} + \vartheta_{1} } \right)\left( {\vartheta_{1} - \vartheta_{2} } \right)} \right) + \vartheta_{2} \left( {\gamma_{1}^{2} k + h\upsilon_{1}^{2} } \right)} \right) \\ & \quad + \gamma_{1}^{2} ku_{2} + h\upsilon_{1}^{2} \left( {l_{2} + u_{2} } \right) + 2\widetilde{{\overline{a}}}_{2} \left( {\gamma_{1}^{2} k + h\left( {\upsilon_{1}^{2} - 2k\left( {\varrho_{1} + \vartheta_{1} } \right)} \right)} \right) \\ & \quad + h\upsilon_{1} \upsilon_{2} \left( {2\widetilde{{\overline{a}}}_{1} + l_{1} - 2\overline{C}_{1}^{c} \varrho_{1} - 2\overline{C}_{1}^{c} \vartheta_{1} - 2\overline{C}_{2}^{c} \vartheta_{1} - 4\overline{C}_{2}^{c} \vartheta_{2} + u_{1} } \right) \\ & \quad - \Phi \lambda_{0} \Psi T\xi \left( {b_{2} \left( {l_{2} + u_{2} } \right)\left( {\gamma_{1}^{2} k + h\left( {\upsilon_{1}^{2} - 2k\left( {\varrho_{1} + \vartheta_{1} } \right)} \right)} \right)} \right. \\ & \quad \left. { + b_{1} \left( {l_{1} + u_{1} } \right)\left( {\gamma_{1} \gamma_{2} k - hk\left( {\vartheta_{1} + \vartheta_{2} } \right) + h\upsilon_{1} \upsilon_{2} } \right)} \right) \\ \end{aligned} $$
(C13)
$$ \begin{aligned} T_{14} & = - 2\widetilde{{\overline{a}}}_{1} \gamma_{2}^{2} \upsilon_{1} - \gamma_{2}^{2} l_{1} \upsilon_{1} - \gamma_{1} \gamma_{2} l_{2} \upsilon_{1} + 2\overline{C}_{1}^{c} \gamma_{2}^{2} \varrho_{1} \upsilon_{1} + 2\overline{C}_{2}^{c} \gamma_{1} \gamma_{2} \varrho_{2} \upsilon_{1} + 4\widetilde{{\overline{a}}}_{1} h\varrho_{2} \upsilon_{1} \\ & \quad + 2hl_{1} \varrho_{2} \upsilon_{1} - 4\overline{C}_{1}^{c} h\varrho_{1} \varrho_{2} \upsilon_{1} + 2\overline{C}_{1}^{c} \gamma_{2}^{2} \vartheta_{1} \upsilon_{1} - 2\overline{C}_{2}^{c} \gamma_{2}^{2} \vartheta_{1} \upsilon_{1} + hl_{2} \vartheta_{1} \upsilon_{1} \\ & \quad - 4\overline{C}_{1}^{c} h\varrho_{2} \vartheta_{1} \upsilon_{1} + 2\overline{C}_{2}^{c} h\varrho_{2} \vartheta_{1} \upsilon_{1} - 2\overline{C}_{1}^{c} \gamma_{1} \gamma_{2} \vartheta_{2} \upsilon_{1} + 2\overline{C}_{2}^{c} \gamma_{1} \gamma_{2} \vartheta_{2} \upsilon_{1} \\ & \quad + 4\widetilde{{\overline{a}}}_{1} h\vartheta_{2} \upsilon_{1} + 2hl_{1} \vartheta_{2} \upsilon_{1} + hl_{2} \vartheta_{2} \upsilon_{1} - 4\overline{C}_{1}^{c} h\varrho_{1} \vartheta_{2} \upsilon_{1} - 2\overline{C}_{2}^{c} h\varrho_{2} \vartheta_{2} \upsilon_{1} \\ & \quad - 2\overline{C}_{1}^{c} h\vartheta_{1} \vartheta_{2} \upsilon_{1} + 2\overline{C}_{2}^{c} h\vartheta_{1} \vartheta_{2} \upsilon_{1} + 2\overline{C}_{1}^{c} h\vartheta_{2}^{2} \upsilon_{1} - 2\overline{C}_{2}^{c} h\vartheta_{2}^{2} \upsilon_{1} - \gamma_{2}^{2} u_{1} \upsilon_{1} \\ & \quad + 2h\varrho_{2} u_{1} \upsilon_{1} + 2h\vartheta_{2} u_{1} \upsilon_{1} - \gamma_{1} \gamma_{2} u_{2} \upsilon_{1} + h\vartheta_{1} u_{2} \upsilon_{1} + h\vartheta_{2} u_{2} \upsilon_{1} \\ & \quad + 2\widetilde{{\overline{a}}}_{1} \gamma_{1} \gamma_{2} \upsilon_{2} + \gamma_{1} \gamma_{2} l_{1} \upsilon_{2} + \gamma_{1}^{2} l_{2} \upsilon_{2} - 2\overline{C}_{1}^{c} \gamma_{1} \gamma_{2} \varrho_{1} \upsilon_{2} - 2hl_{2} \varrho_{1} \upsilon_{2} \\ & \quad - 2\overline{C}_{2}^{c} \gamma_{1}^{2} \varrho_{2} \upsilon_{2} + 4\overline{C}_{2}^{c} h\varrho_{1} \varrho_{2} \upsilon_{2} - 2\overline{C}_{1}^{c} \gamma_{1} \gamma_{2} \vartheta_{1} \upsilon_{2} + 2\overline{C}_{2}^{c} \gamma_{1} \gamma_{2} \vartheta_{1} \upsilon_{2} \\ & \quad - 2\widetilde{{\overline{a}}}_{1} h\vartheta_{1} \upsilon_{2} - hl_{1} \vartheta_{1} \upsilon_{2} - 2hl_{2} \vartheta_{1} \upsilon_{2} + 2\overline{C}_{1}^{c} h\varrho_{1} \vartheta_{1} \upsilon_{2} + 4\overline{C}_{2}^{c} h\varrho_{2} \vartheta_{1} \upsilon_{2} \\ & \quad + 2\overline{C}_{1}^{c} h\vartheta_{1}^{2} \upsilon_{2} - 2\overline{C}_{2}^{c} h\vartheta_{1}^{2} \upsilon_{2} + 2\overline{C}_{1}^{c} \gamma_{1}^{2} \vartheta_{2} \upsilon_{2} - 2\overline{C}_{2}^{c} \gamma_{1}^{2} \vartheta_{2} \upsilon_{2} \\ & \quad - 2\widetilde{{\overline{a}}}_{1} h\vartheta_{2} \upsilon_{2} - hl_{1} \vartheta_{2} \upsilon_{2} - 2\overline{C}_{1}^{c} h\varrho_{1} \vartheta_{2} \upsilon_{2} + 4\overline{C}_{2}^{c} h\varrho_{1} \vartheta_{2} \upsilon_{2} \\ & \quad - 2\overline{C}_{1}^{c} h\vartheta_{1} \vartheta_{2} \upsilon_{2} + 2\overline{C}_{2}^{c} h\vartheta_{1} \vartheta_{2} \upsilon_{2} + \gamma_{1} \gamma_{2} u_{1} \upsilon_{2} - h\vartheta_{1} u_{1} \upsilon_{2} - h\vartheta_{2} u_{1} \upsilon_{2} \\ & \quad + \gamma_{1}^{2} u_{2} \upsilon_{2} - 2h\varrho_{1} u_{2} \upsilon_{2} - 2h\vartheta_{1} u_{2} \upsilon_{2} \\ & \quad + \Phi \lambda_{0} \Psi T\xi \left( { - b_{2} \left( {l_{2} + u_{2} } \right)\left( { - \gamma_{1} \gamma_{2} \upsilon_{1} + h\left( {\vartheta_{1} + \vartheta_{2} } \right)\upsilon_{1} + \gamma_{1}^{2} \upsilon_{2} } \right.} \right. \\ & \quad \left. { - 2h\left( {\varrho_{1} + \vartheta_{1} } \right)\upsilon_{2} } \right) \\ & \quad \left. { + b_{1} \left( {l_{1} + u_{1} } \right)\left( {\gamma_{2}^{2} \upsilon_{1} - 2h\left( {\varrho_{2} + \vartheta_{2} } \right)\upsilon_{1} - \gamma_{1} \gamma_{2} \upsilon_{2} + h\left( {\vartheta_{1} + \vartheta_{2} } \right)\upsilon_{2} } \right)} \right) \\ \end{aligned} $$
(C14)
$$ \begin{aligned} T_{15} & = 2\gamma_{2} kl_{2} \varrho_{1} - 4\widetilde{{\overline{a}}}_{1} \gamma_{1} k\varrho_{2} - 2\gamma_{1} kl_{1} \varrho_{2} + 4\overline{C}_{1}^{c} \gamma_{1} k\varrho_{1} \varrho_{2} - 4\overline{C}_{2}^{c} \gamma_{2} k\varrho_{1} \varrho_{2} \\ & \quad + 2\widetilde{{\overline{a}}}_{1} \gamma_{2} k\vartheta_{1} + \gamma_{2} kl_{1} \vartheta_{1} - \gamma_{1} kl_{2} \vartheta_{1} + 2\gamma_{2} kl_{2} \vartheta_{1} - 2\overline{C}_{1}^{c} \gamma_{2} k\varrho_{1} \vartheta_{1} \\ & \quad + 4\overline{C}_{1}^{c} \gamma_{1} k\varrho_{2} \vartheta_{1} - 2\overline{C}_{2}^{c} \gamma_{1} k\varrho_{2} \vartheta_{1} - 4\overline{C}_{2}^{c} \gamma_{2} k\varrho_{2} \vartheta_{1} - 2\overline{C}_{1}^{c} \gamma_{2} k\vartheta_{1}^{2} \\ & \quad + 2\overline{C}_{2}^{c} \gamma_{2} k\vartheta_{1}^{2} - 4\widetilde{{\overline{a}}}_{1} \gamma_{1} k\vartheta_{2} + 2\widetilde{{\overline{a}}}_{1} \gamma_{2} k\vartheta_{2} - 2\gamma_{1} kl_{1} \vartheta_{2} + \gamma_{2} kl_{1} \vartheta_{2} \\ & \quad - \gamma_{1} kl_{2} \vartheta_{2} + 4\overline{C}_{1}^{c} \gamma_{1} k\varrho_{1} \vartheta_{2} + 2\overline{C}_{1}^{c} \gamma_{2} k\varrho_{1} \vartheta_{2} - 4\overline{C}_{2}^{c} \gamma_{2} k\varrho_{1} \vartheta_{2} \\ & \quad + 2\overline{C}_{2}^{c} \gamma_{1} k\varrho_{2} \vartheta_{2} + 2\overline{C}_{1}^{c} \gamma_{1} k\vartheta_{1} \vartheta_{2} - 2\overline{C}_{2}^{c} \gamma_{1} k\vartheta_{1} \vartheta_{2} + 2\overline{C}_{1}^{c} \gamma_{2} k\vartheta_{1} \vartheta_{2} \\ & \quad - 2\overline{C}_{2}^{c} \gamma_{2} k\vartheta_{1} \vartheta_{2} - 2\overline{C}_{1}^{c} \gamma_{1} k\vartheta_{2}^{2} + 2\overline{C}_{2}^{c} \gamma_{1} k\vartheta_{2}^{2} - 2\gamma_{1} k\varrho_{2} u_{1} + \gamma_{2} k\vartheta_{1} u_{1} \\ & \quad - 2\gamma_{1} k\vartheta_{2} u_{1} + \gamma_{2} k\vartheta_{2} u_{1} + 2\gamma_{2} k\varrho_{1} u_{2} - \gamma_{1} k\vartheta_{1} u_{2} + 2\gamma_{2} k\vartheta_{1} u_{2} \\ & \quad - \gamma_{1} k\vartheta_{2} u_{2} - \gamma_{2} l_{2} \upsilon_{1}^{2} + 2\overline{C}_{2}^{c} \gamma_{2} \varrho_{2} \upsilon_{1}^{2} - 2\overline{C}_{1}^{c} \gamma_{2} \vartheta_{2} \upsilon_{1}^{2} + 2\overline{C}_{2}^{c} \gamma_{2} \vartheta_{2} \upsilon_{1}^{2} \\ & \quad - \gamma_{2} u_{2} \upsilon_{1}^{2} - 2\widetilde{{\overline{a}}}_{1} \gamma_{2} \upsilon_{1} \upsilon_{2} - \gamma_{2} l_{1} \upsilon_{1} \upsilon_{2} + \gamma_{1} l_{2} \upsilon_{1} \upsilon_{2} + 2\overline{C}_{1}^{c} \gamma_{2} \varrho_{1} \upsilon_{1} \upsilon_{2} \\ & \quad - 2\overline{C}_{2}^{c} \gamma_{1} \varrho_{2} \upsilon_{1} \upsilon_{2} + 2\overline{C}_{1}^{c} \gamma_{2} \vartheta_{1} \upsilon_{1} \upsilon_{2} - 2\overline{C}_{2}^{c} \gamma_{2} \vartheta_{1} \upsilon_{1} \upsilon_{2} + 2\overline{C}_{1}^{c} \gamma_{1} \vartheta_{2} \upsilon_{1} \upsilon_{2} \\ & \quad - 2\overline{C}_{2}^{c} \gamma_{1} \vartheta_{2} \upsilon_{1} \upsilon_{2} - \gamma_{2} u_{1} \upsilon_{1} \upsilon_{2} + \gamma_{1} u_{2} \upsilon_{1} \upsilon_{2} + 2\widetilde{{\overline{a}}}_{1} \gamma_{1} \upsilon_{2}^{2} + \gamma_{1} l_{1} \upsilon_{2}^{2} \\ & \quad - 2\overline{C}_{1}^{c} \gamma_{1} \varrho_{1} \upsilon_{2}^{2} - 2\overline{C}_{1}^{c} \gamma_{1} \vartheta_{1} \upsilon_{2}^{2} + 2\overline{C}_{2}^{c} \gamma_{1} \vartheta_{1} \upsilon_{2}^{2} + \gamma_{1} u_{1} \upsilon_{2}^{2} \\ & \quad + \Phi \lambda_{0} \Psi T\xi \left( { - b_{2} \left( {l_{2} + u_{2} } \right)\left( {2\gamma_{2} k\left( {\varrho_{1} + \vartheta_{1} } \right) - \gamma_{1} k\left( {\vartheta_{1} + \vartheta_{2} } \right)} \right.} \right. \\ & \quad \left. { - \gamma_{2} \upsilon_{1}^{2} + \gamma_{1} \upsilon_{1} \upsilon_{2} } \right) \\ & \quad \left. { + b_{1} \left( {l_{1} + u_{1} } \right)\left( {2\gamma_{1} k\left( {\varrho_{2} + \vartheta_{2} } \right) - \gamma_{2} k\left( {\vartheta_{1} + \vartheta_{2} } \right) + \gamma_{2} \upsilon_{1} \upsilon_{2} - \gamma_{1} \upsilon_{2}^{2} } \right)} \right) \\ \end{aligned} $$
(C15)
$$ \begin{aligned} T_{16} & = \Phi \xi \lambda_{0} \Psi T\left( {b_{2} l_{2} \upsilon_{1} \upsilon_{2} \left( {l_{2} + u_{2} } \right) + \upsilon_{2}^{2} \left( {l_{1} + u_{1} } \right)} \right) \\ & \quad + 2\overline{W}_{1} \left( {\upsilon_{1} \upsilon_{2} \left( {\vartheta_{2} + 2\vartheta_{1} } \right) - 2\upsilon_{1}^{2} \left( {\varrho_{2} + \vartheta_{2} } \right) - \upsilon_{2}^{2} \left( {\varrho_{1} + \vartheta_{1} } \right)} \right) \\ & \quad + 2\upsilon_{2} \overline{W}_{2} \left( {\upsilon_{1} \left( {\varrho_{2} + \vartheta_{2} } \right) - \vartheta_{1} \upsilon_{2} } \right) + 2\upsilon_{2} \overline{\zeta }^{*} \left( {\gamma_{2} \upsilon_{1} - \gamma_{1} \upsilon_{2} } \right) \\ & \quad + k\left( {\vartheta_{2} \left( {l_{2} + u_{2} } \right) + 2\left( {\varrho_{2} + \vartheta_{2} } \right)\left( {l_{1} + u_{1} } \right) + 2\widetilde{{\overline{a}}}_{2} \left( {\vartheta_{1} + \vartheta_{2} } \right)} \right. \\ & \quad + \vartheta_{1} \left( {l_{2} + u_{2} } \right) \\ & \quad - \Phi \xi \lambda_{0} \Psi T\left( {2b_{1} \left( {\varrho_{2} + \vartheta_{2} } \right)\left( {l_{1} + u_{1} } \right) + b_{2} \left( {\vartheta_{1} + \vartheta_{2} } \right)\left( {l_{2} + u_{2} } \right)} \right) \\ & \quad + 2\overline{W}_{1} \left( {2\varrho_{1} \left( {\varrho_{2} + \vartheta_{2} } \right) + \vartheta_{1} \left( {2\varrho_{2} - \vartheta_{1} + \vartheta_{2} } \right)} \right) \\ & \quad \left. { + 2\overline{W}_{2} \left( {\left( {\vartheta_{1} - \vartheta_{2} } \right)\left( {\varrho_{2} + \vartheta_{1} } \right)} \right) + 2\overline{\zeta }^{*} \left( {2\left( {\varrho_{2} + \vartheta_{2} } \right) - \gamma_{2} \left( {\vartheta_{1} + \vartheta_{2} } \right)} \right)} \right) \\ \end{aligned} $$
(C16)
$$ \begin{aligned} T_{17} = & \;\Phi \xi \lambda_{0} \Psi T\left( {b_{2} v_{1}^{2} \left( {l_{2} + u_{2} } \right) + b_{1} \upsilon_{1} \upsilon_{2} \left( {l_{1} + u_{1} } \right)} \right) + 2\overline{W}_{1} \left( {\upsilon_{1} \upsilon_{2} \left( {\varrho_{1} + \vartheta_{1} } \right) - \vartheta_{2} v_{1}^{2} } \right) \\ & + \;\overline{W}_{2} \left( {2\upsilon_{1} \upsilon_{2} \left( {\vartheta_{1} + 2\vartheta_{2} } \right) - 2v_{1}^{2} \left( {\varrho_{2} + \vartheta_{2} } \right) - 4v_{2}^{2} \left( {\varrho_{1} + \vartheta_{1} } \right)} \right) + 2\upsilon_{1} \overline{\zeta }^{*} \left( {\gamma_{2} \upsilon_{1} - \gamma_{1} \upsilon_{2} } \right) \\ & + \;k\left( {2l_{2} \left( {\varrho_{1} + \vartheta_{1} } \right) + \left( {2\widetilde{{\overline{a}}}_{1} + l_{1} } \right)\left( {\vartheta_{1} + \vartheta_{2} } \right) + \vartheta_{2} u_{1} + 2\varrho_{1} u_{2} - \Phi \xi \lambda_{0} \Psi T\left( {2b_{2} \varrho_{1} \left( {l_{2} + u_{2} } \right)} \right.} \right. \\ & \left. { + \;b_{1} \vartheta_{2} \left( {l_{1} + u_{1} } \right)} \right) + 2\overline{W}_{1} \left( {\varrho_{1} \vartheta_{2} - \vartheta_{1}^{2} } \right) + 2\overline{W}_{2} \left( {2\varrho_{1} \left( {\varrho_{2} + \vartheta_{2} } \right) - \vartheta_{2}^{2} } \right) + 2\overline{\zeta }^{*} \left( {\gamma_{1} \vartheta_{2} - 2\gamma_{2} \varrho_{1} } \right) \\ & + \;\vartheta_{1} \left( {u_{1} + 2u_{2} - \Phi \xi \lambda_{0} \Psi T\left( {b_{1} \left( {l_{1} + u_{1} } \right) + 2b_{2} \left( {l_{2} + u_{2} } \right)} \right) + 2\left( {2\varrho_{2} \overline{W}_{2} - \varrho_{1} \overline{W}_{1} } \right.} \right. \\ & \left. {\left. {\left. { + \;\vartheta_{2} \left( {\overline{W}_{1} + \overline{W}_{2} } \right) + \overline{\zeta }^{*} \left( {\gamma_{1} - 2\gamma_{2} } \right)} \right)} \right)} \right) \\ \end{aligned} $$
(C17)
$$ \begin{aligned} T_{18} = & \; - \upsilon_{1} \left( {2u_{1} \left( {\varrho_{2} + \vartheta_{2} } \right) + u_{2} \left( {\vartheta_{1} + \vartheta_{2} } \right)} \right) + \upsilon_{2} \left( {2\left( {\varrho_{1} + \vartheta_{1} } \right)\left( {l_{2} + 2\widetilde{{\overline{a}}}_{2} } \right) + l_{1} \left( {\vartheta_{1} + \vartheta_{2} } \right)} \right. \\ & \left. { + \;2\widetilde{{\overline{a}}}_{1} \left( {\vartheta_{1} + \vartheta_{2} } \right) + u_{1} \left( {\vartheta_{1} + \vartheta_{2} } \right) + 2u_{2} \left( {\varrho_{1} + \vartheta_{1} } \right)} \right) + \Phi \xi \lambda_{0} \Psi T\left( {\upsilon_{1} } \right.\left( {2b_{1} \left( {\varrho_{2} + \vartheta_{2} } \right)\left( {l_{1} + u_{1} } \right)} \right. \\ & \left. {\left. { + \;b_{2} \left( {\vartheta_{1} + \vartheta_{2} } \right)\left( {l_{2} + u_{2} } \right)} \right) - \upsilon_{2} \left( {2b_{2} \left( {\varrho_{1} + \vartheta_{1} } \right)\left( {l_{2} + u_{2} } \right) + b_{1} \left( {\vartheta_{1} + \vartheta_{2} } \right)\left( {l_{1} + u_{1} } \right)} \right)} \right) \\ & + \;\overline{W}_{1} \left( {\upsilon_{1} \left( {4\varrho_{2} \left( {\varrho_{1} + \vartheta_{1} } \right) + 2\vartheta_{2} \left( {2\varrho_{1} + \vartheta_{1} - \vartheta_{2} } \right)} \right) + \upsilon_{2} \left( {2\vartheta_{2} \left( {\varrho_{1} + \vartheta_{1} } \right) - 2\vartheta_{1} \left( {\varrho_{1} - 2\vartheta_{1} } \right)} \right)} \right) \\ & + \;\overline{W}_{2} \left( {\upsilon_{1} \left( {2\varrho_{2} \left( {\vartheta_{2} - \vartheta_{1} } \right) - 2\vartheta_{2} \left( {\vartheta_{1} + 2\vartheta_{2} } \right)} \right) - \upsilon_{2} \left( {4\varrho_{1} \left( {\varrho_{2} + \vartheta_{2} } \right) + 2\vartheta_{1} \left( {2\varrho_{2} - \vartheta_{1} + \vartheta_{2} } \right)} \right)} \right) \\ & + \;2\overline{\zeta }^{*} \left( { - 2\gamma_{1} \upsilon_{1} \left( {\varrho_{2} + \vartheta_{2} } \right) + \left( {\vartheta_{1} + \vartheta_{2} } \right)\left( {\gamma_{2} \upsilon_{1} + \gamma_{1} \upsilon_{2} } \right) - 2\gamma_{2} \upsilon_{2} \left( {\varrho_{1} + \vartheta_{1} } \right)} \right) \\ \end{aligned} $$
(C18)
$$ \begin{aligned} T_{19} = & \;\left( {2\overline{C}_{2} \left( t \right)k\left( {\varrho_{2} + \vartheta_{2} } \right)\left( {\gamma_{1} \vartheta_{2} - 2\gamma_{2} \left( {\varrho_{1} + \vartheta_{1} } \right)} \right) - 2b_{2} \Phi \gamma_{2} kl_{2} \lambda_{0} \varrho_{1} \Psi^{2} T\xi } \right. \\ & + \;2b_{1} \Phi \gamma_{1} kl_{1} \lambda_{0} \varrho_{2} \Psi^{2} T\xi - b_{1} \Phi \gamma_{2} kl_{1} \lambda_{0} \Psi^{2} T\vartheta_{1} \xi - 2b_{2} \Phi \gamma_{2} kl_{2} \lambda_{0} \Psi^{2} T\vartheta_{1} \xi \\ & + \;2b_{1} \Phi \gamma_{1} kl_{1} \lambda_{0} \Psi^{2} T\vartheta_{2} \xi + b_{2} \Phi \gamma_{1} kl_{2} \lambda_{0} \Psi^{2} T\vartheta_{2} \xi + 2b_{1} \Phi \gamma_{1} k\lambda_{0} \varrho_{2} \Psi^{2} Tu_{1} \xi \\ & - \;b_{1} \Phi \gamma_{2} k\lambda_{0} \Psi^{2} T\vartheta_{1} u_{1} \xi + 2b_{1} \Phi \gamma_{1} k\lambda_{0} \Psi^{2} T\vartheta_{2} u_{1} \xi - 2b_{2} \Phi \gamma_{2} k\lambda_{0} \varrho_{1} \Psi^{2} Tu_{2} \xi \\ & - \;2b_{2} \Phi \gamma_{2} k\lambda_{0} \Psi^{2} T\vartheta_{1} u_{2} \xi + b_{2} \Phi \gamma_{1} k\lambda_{0} \Psi^{2} T\vartheta_{2} u_{2} \xi + b_{1} \Phi \gamma_{2} l_{1} \lambda_{0} \Psi^{2} T\upsilon_{1} \upsilon_{2} \xi \\ & + \;b_{1} \Phi \gamma_{2} \lambda_{0} \Psi^{2} Tu_{1} \upsilon_{1} \upsilon_{2} \xi - b_{1} \Phi \gamma_{1} l_{1} \lambda_{0} \Psi^{2} T\upsilon_{2}^{2} \xi - b_{1} \Phi \gamma_{1} \lambda_{0} \Psi^{2} Tu_{1} \upsilon_{2}^{2} \xi \\ & - \;4\gamma_{1} k{\Omega }\varrho_{1} \varrho_{2} \overline{W}_{1} \left( t \right) + 2\gamma_{2} k{\Omega }\varrho_{1} \vartheta_{1} \overline{W}_{1} \left( t \right) - 4\gamma_{1} k{\Omega }\varrho_{2} \vartheta_{1} \overline{W}_{1} \left( t \right) + 2\gamma_{2} k{\Omega }\vartheta_{1}^{2} \overline{W}_{1} \left( t \right) \\ & - \;4\gamma_{1} k{\Omega }\varrho_{1} \vartheta_{2} \overline{W}_{1} \left( t \right) - 4\gamma_{1} k{\Omega }\vartheta_{1} \vartheta_{2} \overline{W}_{1} \left( t \right) - 2\gamma_{2} {\Omega }\varrho_{1} \upsilon_{1} \upsilon_{2} \overline{W}_{1} \left( t \right) - 2\gamma_{2} {\Omega }\vartheta_{1} \upsilon_{1} \upsilon_{2} \overline{W}_{1} \left( t \right) \\ & \left. { + \;2\gamma_{1} {\Omega }\varrho_{1} \upsilon_{2}^{2} \overline{W}_{1} \left( t \right) + 2\gamma_{1} {\Omega }\vartheta_{1} \upsilon_{2}^{2} \overline{W}_{1} \left( t \right) + 2k\left( {\varrho_{2} + \vartheta_{2} } \right)\left( {2\gamma_{2} \left( {\varrho_{1} + \vartheta_{1} } \right) - \gamma_{1} \vartheta_{2} } \right)\overline{W}_{2} \left( t \right)} \right) \\ \end{aligned} $$
(C19)

Appendix D: Proof of Theorem 3.2

By determining the second-order derivative of the profit function, it is obvious that a positive \(h\) guarantees the concavity condition \(\left( { - h < 0} \right)\).□

Appendix E: Proof of Proposition 2

The Jacobian matrix is introduced to find the system’s stable region for supply chain members to adjust their decisions. The Jacobian matrix of function is:

$$ \left( {\begin{array}{*{20}c} {\overline{{J_{11} }} } & {\overline{{J_{12} }} } & {\overline{{J_{13} }} } & {\overline{{J_{14} }} } \\ {\overline{{J_{21} }} } & {\overline{{J_{22} }} } & {\overline{{J_{23} }} } & {\overline{{J_{24} }} } \\ {\overline{{J_{31} }} } & {\overline{{J_{32} }} } & {\overline{{J_{33} }} } & 0 \\ 0 & 0 & 0 & {\overline{{J_{44} }} } \\ \end{array} } \right) $$

The corresponding characteristic equation is as Eq. (E1):

$$ F\left( \lambda \right) = \eta_{0} \lambda^{4} + \eta_{1} \lambda^{3} + \eta_{2} \lambda^{2} + \eta_{3} \lambda^{1} + \eta_{4} \lambda^{0} $$
(E1)

where:

$$ \left\{ {\begin{array}{*{20}l} {\eta_{0} = 1} \hfill \\ {\eta_{1} = - \left( {\overline{{J_{11} }} + \overline{{J_{22} }} + \overline{{J_{33} }} - \overline{{J_{44} }} } \right)} \hfill \\ {\eta_{2} = { }\overline{{J_{11} }} { }\overline{{J_{22} }} - \overline{{J_{12} }} { }\overline{{J_{21} }} - \overline{{J_{13} }} { }\overline{{J_{31} }} - \overline{{J_{23} }} { }\overline{{J_{32} }} + { }\overline{{J_{33} }} \left( {\overline{{J_{11} }} + \overline{{J_{22} }} + \overline{{J_{44} }} } \right) + \overline{{J_{44} }} \left( {\overline{{J_{22} }} + \overline{{J_{11} }} } \right)} \hfill \\ {\eta_{3} = \overline{{J_{44} }} \left( {\overline{{J_{12} }} { }\overline{{J_{21} }} - \overline{{J_{11} }} { }\overline{{J_{22} }} + \overline{{J_{13} }} { }\overline{{J_{31} }} + \overline{{J_{23} }} { }\overline{{J_{32} }} - \overline{{J_{33} }} \left( {\overline{{J_{11} }} + \overline{{J_{22} }} { }} \right)} \right)} \hfill \\ { + { }\overline{{J_{31} }} \left( {\overline{{J_{13} }} { }\overline{{J_{22} }} - \overline{{J_{12} }} { }\overline{{J_{23} }} { }} \right) + { }\overline{{J_{32} }} \left( {\overline{{J_{11} }} { }\overline{{J_{23} }} - \overline{{J_{13} }} { }\overline{{J_{21} }} } \right) + { }\overline{{J_{33} }} \left( {\overline{{J_{12} }} { }\overline{{J_{21} }} - \overline{{J_{11} }} { }\overline{{J_{22} }} { }} \right)} \hfill \\ {\eta_{4} = { }\overline{{J_{44} }} \left( {\overline{{J_{31} }} \left( {\overline{{J_{12} }} { }\overline{{J_{23} }} - \overline{{J_{13} }} { }\overline{{J_{22} }} } \right) + \overline{{J_{32} }} \left( {\overline{{J_{13} }} { }\overline{{J_{21} }} - \overline{{J_{11} }} { }\overline{{J_{23} }} { }} \right) + \overline{{J_{33} }} \left( {\overline{{J_{11} }} { }\overline{{J_{22} }} - \overline{{J_{12} }} { }\overline{{J_{21} }} } \right)} \right)} \hfill \\ \end{array} } \right. $$
(E2)

According to the Jury test condition, the sufficient conditions for stability of \(F\left(\lambda \right)\) are as Eq. (E3):

$$ \left\{ {\begin{array}{*{20}l} {\left| {\eta_{4} } \right| < \eta_{0} } \hfill \\ {\left. {F\left( \lambda \right)} \right|_{\lambda = 1} > 0} \hfill \\ {\left. {F\left( \lambda \right)} \right|_{\lambda = - 1} > 0} \hfill \\ {\left| {b_{3} } \right| > \left| {b_{0} } \right|} \hfill \\ {\left| {c_{2} } \right| > \left| {c_{0} } \right|} \hfill \\ \end{array} } \right. $$
(E3)

By solving the above conditions, it can be considered locally stable of the model. In theory, the conditions are very complex, and the processes of solving the corresponding characteristic equation is a very complicated task.

The values of Jacobian matrix for the Stochasic-Dynamic Disruption Model:

$$ \begin{aligned} \overline{{J_{11} }} & = 1 - 2\omega_{1} \overline{P}_{1} \left( t \right)\left( {\varrho_{1} + \vartheta_{1} } \right) \\ & \quad + \frac{1}{2}\omega_{1} \left( {2\widetilde{{\overline{a}}}_{1} + l_{1} - 4\overline{P}_{1} \left( t \right)\left( {\varrho_{1} + \vartheta_{1} } \right) + 2\overline{P}_{2} \left( t \right)\left( {\vartheta_{1} + \vartheta_{2} } \right) + u_{1} } \right. \\ & \quad - 2\overline{\sigma }\left( t \right)v_{1} - b_{1} \xi \lambda_{0} \Psi T\Phi \left( {l_{1} + u_{1} } \right) + 2\left( {\varrho_{1} + \vartheta_{1} } \right)\overline{W}_{1} \left( t \right) \\ & \quad \left. { - 2\vartheta_{2} \overline{W}_{2} \left( t \right) + 2\gamma_{1} \overline{\zeta }\left( t \right)} \right) \\ \end{aligned} $$
(E4)
$$ \overline{{J_{12} }} = \omega_{1} \overline{P}_{1} \left( t \right)\left( {\vartheta_{1} + \vartheta_{2} } \right) $$
(E5)
$$ \overline{{J_{13} }} = - \omega_{1} \upsilon_{1} \overline{P}_{1} \left( t \right) $$
(E6)
$$ \overline{{J_{14} }} = \gamma_{1} \omega_{1} \overline{P}_{1} \left( t \right) $$
(E7)
$$ \overline{{J_{21} }} = \omega_{2} \overline{P}_{2} \left( t \right)\left( {\vartheta_{1} + \vartheta_{2} } \right) $$
(E8)
$$ \begin{aligned} \overline{{J_{22} }} & = 1 - 2\omega_{2} \overline{P}_{2} \left( t \right)\left( {\varrho_{2} + \vartheta_{2} } \right) \\ & \quad + \frac{1}{2}\omega_{2} \left( {2\widetilde{{\overline{a}}}_{2} + l_{2} - 4\overline{P}_{2} \left( t \right)\left( {\varrho_{2} + \vartheta_{2} } \right) + 2\overline{P}_{1} \left( t \right)\left( {\vartheta_{1} + \vartheta_{2} } \right)} \right. + u_{2} \\ & \quad + 2\overline{\sigma }\left( t \right)v_{2} - b_{2} \xi \lambda_{0} \Psi T\Phi \left( {l_{2} + u_{2} } \right) - 2\vartheta_{1} \overline{W}_{1} \left( t \right) \\ & \quad \left. { + 2\left( {\varrho_{2} + \vartheta_{2} } \right)\overline{W}_{2} \left( t \right) - 2\gamma_{2} \overline{\zeta }\left( t \right)} \right) \\ \end{aligned} $$
(E9)
$$ \overline{{J_{23} }} = \omega_{2} \upsilon_{2} \overline{P}_{2} \left( t \right) $$
(E10)
$$ \overline{{J_{24} }} = - \gamma_{2} \omega_{2} \overline{P}_{2} \left( t \right) $$
(E11)
$$ \overline{{J_{31} }} = - \omega_{3} \upsilon_{1} \overline{\sigma }\left( t \right) $$
$$ \overline{{J_{32} }} = \omega_{3} \upsilon_{2} \overline{\sigma }\left( t \right) $$
(E12)
$$ \overline{{J_{33} }} = 1 - k\omega_{3} \overline{\sigma }\left( t \right) + \omega_{3} \left( { - k\overline{\sigma }\left( t \right) - v_{1} \left( {\overline{P}_{1} \left( t \right) - \overline{W}_{1} \left( t \right)} \right) + v_{2} \left( {\overline{P}_{2} \left( t \right) - \overline{W}_{2} \left( t \right)} \right)} \right) $$
(E13)
$$ \overline{{J_{44} }} = 1 - h\omega_{4} \overline{\zeta }\left( t \right) + \omega_{4} \left( {\gamma_{1} \left( {\overline{W}_{1} \left( t \right) - \overline{C}_{1} \left( t \right)} \right) - \gamma_{2} \left( {\overline{W}_{2} \left( t \right) - \overline{C}_{2} \left( t \right)} \right) - h\overline{\zeta }\left( t \right)} \right) $$
(E14)

Appendix F: Proof of Proposition 3

The Jacobian matrix is introduced to find the system’s stable region for supply chain members to adjust their decisions. The Jacobian matrix of function is:

$$ \left( {\begin{array}{*{20}c} {\overline{{J_{11} }}^{c} } & {\overline{{J_{12} }}^{c} } & {\overline{{J_{13} }}^{c} } & {\overline{{J_{14} }}^{c} } \\ {\overline{{J_{21} }}^{c} } & {\overline{{J_{22} }}^{c} } & {\overline{{J_{23} }}^{c} } & {\overline{{J_{24} }}^{c} } \\ {\overline{{J_{31} }}^{c} } & {\overline{{J_{32} }}^{c} } & {\overline{{J_{33} }}^{c} } & 0 \\ {\overline{{J_{41} }}^{c} } & {\overline{{J_{42} }}^{c} } & 0 & {\overline{{J_{44} }}^{c} } \\ \end{array} } \right) $$

where the \(\overline{{J_{ij} }}^{c}\) is provided in Appendix D. The corresponding characteristic equation is as Eq. (F1):

$$ F\left( \lambda \right) = \eta_{0} \lambda^{4} + \eta_{1} \lambda^{3} + \eta_{2} \lambda^{2} + \eta_{3} \lambda^{1} + \eta_{4} \lambda^{0} $$
(F1)

where:

$$ \left\{ {\begin{array}{*{20}l} {\eta_{0} = 1} \hfill \\ {\eta_{1} = - \left( {\overline{{J_{11} }}^{c} + \overline{{J_{22} }}^{c} + \overline{{J_{33} }}^{c} + \overline{{J_{44} }}^{c} } \right)} \hfill \\ {\eta_{2} = \overline{{J_{44} }}^{c} \left( {\overline{{J_{11} }}^{c} + \overline{{J_{22} }}^{c} + \overline{{J_{33} }}^{c} } \right) + \overline{{J_{22} }}^{c} \left( {\overline{{J_{11} }}^{c} + \overline{{J_{33} }}^{c} } \right) - \overline{{J_{12} }}^{c} \overline{{J_{21} }}^{c} - \overline{{J_{13} }}^{c} \overline{{J_{31} }}^{c} } \hfill \\ {\quad \quad - \overline{{J_{23} }}^{c} \overline{{J_{32} }}^{c} + \overline{{J_{11} }}^{c} \overline{{J_{33} }}^{c} - \overline{{J_{14} }}^{c} \overline{{J_{41} }}^{c} - \overline{{J_{24} }}^{c} \overline{{J_{42} }}^{c} } \hfill \\ {\eta_{3} = \overline{{J_{44} }}^{c} \left( {\overline{{J_{12} }}^{c} \overline{{J_{21} }}^{c} - \overline{{J_{11} }}^{c} \overline{{J_{22} }}^{c} + \overline{{J_{13} }}^{c} \overline{{J_{31} }}^{c} + \overline{{J_{23} }}^{c} \overline{{J_{32} }}^{c} - \overline{{J_{33} }}^{c} \left( {\overline{{J_{11} }}^{c} + \overline{{J_{22} }}^{c} } \right)} \right)} \hfill \\ {\quad \quad + \overline{{J_{41} }}^{c} \left( {\overline{{J_{14} }}^{c} \overline{{J_{22} }}^{c} - \overline{{J_{12} }}^{c} \overline{{J_{24} }}^{c} + \overline{{J_{14} }}^{c} \overline{{J_{33} }}^{c} } \right)} \hfill \\ {\quad \quad + \overline{{J_{42} }}^{c} \left( {\overline{{J_{11} }}^{c} \overline{{J_{24} }}^{c} - \overline{{J_{14} }}^{c} \overline{{J_{21} }}^{c} + \overline{{J_{24} }}^{c} \overline{{J_{33} }}^{c} } \right) + \overline{{J_{31} }}^{c} \left( {\overline{{J_{13} }}^{c} \overline{{J_{22} }}^{c} - \overline{{J_{12} }}^{c} \overline{{J_{23} }}^{c} } \right)} \hfill \\ {\quad \quad + \overline{{J_{33} }}^{c} \left( {\overline{{J_{12} }}^{c} \overline{{J_{21} }}^{c} - \overline{{J_{11} }}^{c} \overline{{J_{22} }}^{c} } \right) + \overline{{J_{32} }}^{c} \left( {\overline{{J_{11} }}^{c} \overline{{J_{23} }}^{c} - \overline{{J_{13} }}^{c} \overline{{J_{21} }}^{c} } \right)} \hfill \\ {\eta_{4} = { }\overline{{J_{41} }}^{c} \left( {\overline{{J_{32} }}^{c} \left( {\overline{{J_{14} }}^{c} \overline{{J_{23} }}^{c} - \overline{{J_{13} }}^{c} \overline{{J_{24} }}^{c} } \right) + \overline{{J_{33} }}^{c} \left( {\overline{{J_{12} }}^{c} \overline{{J_{24} }}^{c} - \overline{{J_{14} }}^{c} \overline{{J_{22} }}^{c} } \right)} \right)} \hfill \\ {\quad \quad + \overline{{J_{42} }}^{c} \left( {\overline{{J_{31} }}^{c} \left( {\overline{{J_{13} }}^{c} \overline{{J_{24} }}^{c} - \overline{{J_{14} }}^{c} \overline{{J_{23} }}^{c} } \right) + \overline{{J_{33} }}^{c} \left( {\overline{{J_{14} }}^{c} \overline{{J_{21} }}^{c} - \overline{{J_{11} }}^{c} \overline{{J_{24} }}^{c} } \right)} \right)} \hfill \\ {\overline{{J_{44} }}^{c} \left( {\begin{array}{*{20}c} {\overline{{J_{31} }}^{c} \left( {\overline{{J_{12} }}^{c} \overline{{J_{23} }}^{c} - \overline{{J_{13} }}^{c} \overline{{J_{22} }}^{c} } \right) + \overline{{J_{32} }}^{c} \left( {\overline{{J_{13} }}^{c} \overline{{J_{21} }}^{c} - \overline{{J_{11} }}^{c} \overline{{J_{23} }}^{c} } \right)} \\ { + \overline{{J_{33} }}^{c} \left( {\overline{{J_{11} }}^{c} \overline{{J_{22} }}^{c} - \overline{{J_{12} }}^{c} \overline{{J_{21} }}^{c} } \right)} \\ \end{array} } \right.} \hfill \\ \end{array} } \right. $$
(F2)

According to the Jury test condition, the sufficient conditions for stability of \(F\left(\lambda \right)\) are as Eq. (F3):

$$ \left\{ {\begin{array}{*{20}l} {\left| {\eta_{4} } \right| < \eta_{0} } \hfill \\ {\left. {F\left( \lambda \right)} \right|_{\lambda = 1} > 0} \hfill \\ {\left. {F\left( \lambda \right)} \right|_{\lambda = - 1} > 0} \hfill \\ {\left| {b_{3} } \right| > \left| {b_{0} } \right|} \hfill \\ {\left| {c_{2} } \right| > \left| {c_{0} } \right|} \hfill \\ \end{array} } \right. $$
(F3)

By solving the above conditions, they can be considered locally stable of the model. In theory, the conditions are very complex, and the processes of solving the corresponding characteristic equation are very complicated tasks.

$$ \begin{aligned} \overline{{J_{11} }}^{c} & = 1 - 2\omega_{1} \overline{P}_{1} \left( t \right)^{c} \left( {\varrho_{1} + \vartheta_{1} } \right) \\ & \quad + \frac{1}{2}\omega_{1} \left( {2\widetilde{{\overline{a}}}_{1} + l_{1} + 2\overline{C}_{1} \left( t \right)^{c} \left( {\varrho_{1} + \vartheta_{1} } \right) - 4\overline{P}_{1} \left( t \right)^{c} \left( {\varrho_{1} + \vartheta_{1} } \right)} \right. \\ & \quad - 2\overline{C}_{2} \left( t \right)^{c} \vartheta_{2} + 2\overline{P}_{2} \left( t \right)^{c} \left( {\vartheta_{1} + \vartheta_{2} } \right) + u_{1} - 2\overline{\sigma }\left( t \right)^{c} \upsilon_{1} \\ & \quad \left. { - b_{1} \Phi \lambda_{0} \Psi T\xi \left( {l_{1} + u_{1} } \right) + 2\gamma_{1} \overline{\zeta }\left( t \right)^{c} } \right) \\ \end{aligned} $$
(F4)
$$ \overline{{J_{12} }}^{c} = \omega_{1} \overline{P}_{1} \left( t \right)^{c} \left( {\varrho_{1} + \vartheta_{1} } \right) $$
(F5)
$$ \overline{{J_{13} }}^{c} = - \omega_{1} \overline{P}_{1} \left( t \right)^{c} \upsilon_{1} $$
(F6)
$$ \overline{{J_{14} }}^{c} = \gamma_{1} \omega_{1} \overline{P}_{1} \left( t \right)^{c} $$
(F7)
$$ \overline{{J_{21} }}^{c} = \omega_{2} \overline{P}_{2} \left( t \right)^{c} \left( {\vartheta_{1} + \vartheta_{2} } \right) $$
(F8)
$$ \begin{aligned} \overline{{J_{22} }}^{c} & = 1 - 2\omega_{2} \overline{P}_{2} \left( t \right)^{c} \left( {\varrho_{2} + \vartheta_{2} } \right) \\ & \quad + \frac{1}{2}\omega_{2} \left( {2\widetilde{{\overline{a}}}_{2} + l_{2} - 2\overline{C}_{1} \left( t \right)^{c} \vartheta_{1} + 2\overline{C}_{2} \left( t \right)^{c} \left( {\varrho_{2} + \vartheta_{2} } \right)} \right. \\ & \quad - 4\overline{P}_{2} \left( t \right)^{c} \left( {\varrho_{2} + \vartheta_{2} } \right) + 2\overline{P}_{1} \left( t \right)^{c} \left( {\vartheta_{1} + \vartheta_{2} } \right) + u_{2} + 2\overline{\sigma }\left( t \right)^{c} \upsilon_{2} \\ & \quad \left. { - b_{2} \Phi \lambda_{0} \Psi T\xi \left( {l_{2} + u_{2} } \right) - 2\gamma_{2} \overline{\zeta }\left( t \right)^{c} } \right) \\ \end{aligned} $$
(F9)
$$ \overline{{J_{23} }}^{c} = \omega_{2} \overline{P}_{2} \left( t \right)^{c} \upsilon_{2} $$
(F10)
$$ \overline{{J_{24} }}^{c} = - \gamma_{2} \omega_{2} \overline{P}_{2} \left( t \right)^{c} $$
(F11)
$$ \overline{{J_{31} }}^{c} = - \omega_{3} \overline{\sigma }\left( t \right)^{c} \upsilon_{1} $$
(F12)
$$ \overline{{J_{32} }}^{c} = \omega_{3} \overline{\sigma }\left( t \right)^{c} \upsilon_{2} $$
(F13)
$$ \overline{{J_{33} }}^{c} = 1 - k\omega_{3} \overline{\sigma }\left( t \right)^{c} - \omega_{3} \left( {k\overline{\sigma }\left( t \right)^{c} - \overline{C}_{1} \left( t \right)^{c} \upsilon_{1} + \overline{P}_{1} \left( t \right)^{c} \upsilon_{1} + \overline{C}_{2} \left( t \right)^{c} \upsilon_{2} - \overline{P}_{2} \left( t \right)^{c} \upsilon_{2} } \right) $$
(F14)
$$ \overline{{J_{41} }}^{c} = \gamma_{1} \omega_{4} \overline{\zeta }\left( t \right)^{c} $$
(F15)
$$ \overline{{J_{42} }}^{c} = - \gamma_{2} \omega_{4} \overline{\zeta }\left( t \right)^{c} $$
(F16)
$$ \overline{{J_{44} }}^{c} = 1 - h\omega_{4} \overline{\zeta }\left( t \right)^{c} - \omega_{4} \left( {\overline{C}_{1} \left( t \right)^{c} \gamma_{1} - \overline{C}_{2} \left( t \right)^{c} \gamma_{2} - \gamma_{1} \overline{P}_{1} \left( t \right)^{c} + \gamma_{2} \overline{P}_{2} \left( t \right)^{c} + h\overline{\zeta }\left( t \right)^{c} } \right) $$
(F17)

Appendix G: Proof of Theorem 3.5

The concavity of the total profit function in the centralized mode is examined by its corresponding Hessian matrix, \(H\).

$$ H\left( \overline{P}_{1}^{c} ,{ }\overline{P}_{2}^{c} , \overline{\sigma }^{c} ,{ }\overline{\zeta }^{c} \right) = \left[ \begin{array}{*{20}c} { - 2\left( {\varrho_{1} + \vartheta_{1} } \right)} & {\vartheta_{1} + \vartheta_{2} } & { - \upsilon_{1} } & {\gamma_{1} } \\ {\vartheta_{1} + \vartheta_{2} } & { - 2\left( {\varrho_{2} + \vartheta_{2} } \right)} & {\upsilon_{2} } & { - \gamma_{2} } \\ { - \upsilon_{1} } & {\upsilon_{2} } & { - k} & 0 \\ {\gamma_{1} } & { - \gamma_{2} } & 0 & { - h} \\ \end{array} \right] $$

All members on the main diameter are negative. Owing to the positive \({\varrho }_{1}\) and\({\vartheta }_{1}\), it can be shown that the first minor determinant \(\left(-2\left({\varrho }_{1}+{\vartheta }_{1}\right)\right)\) is negative. Moreover, in case the second minor determinant \(\left( {4\varrho_{1} \varrho_{2} + 4\varrho_{2} \vartheta_{1} - \vartheta_{1}^{2} + 4\varrho_{1} \vartheta_{2} + 2\vartheta_{1} \vartheta_{2} - \vartheta_{2}^{2} > 0} \right)\) be positive, the third minor determinant \( \Big(-4k{\varrho }_{1}\left({\varrho }_{2}+{\vartheta }_{2}\right)-4k{\varrho }_{2}{\vartheta }_{1}+k{\vartheta }_{1}^{2}-2k{\vartheta }_{1}{\vartheta }_{2}+k{\vartheta }_{2}^{2}+2{\varrho }_{2}{\upsilon }_{1}^{2}+2{\vartheta }_{2}{\upsilon }_{1}^{2}-2\left({\vartheta }_{1}+{\vartheta }_{2}\right){\upsilon }_{1}{\upsilon }_{2} + 2{\varrho }_{1}{\upsilon }_{2}^{2}+2{\vartheta }_{1}{\upsilon }_{2}^{2}<0\Big)\) be negative (Considering that in this article, parameter \(k\) is a cost parameter and its value is large, and the rest of the parameters are coefficients and have small values, as a result, expressions with parameter \(k\) determine the value of the condition, as a result,\( \left( { - 4k\varrho_{1} \left( {\varrho_{2} + \vartheta_{2} } \right) - 4k\varrho_{2} \vartheta_{1} + k\vartheta_{1}^{2} - 2k\vartheta_{1} \vartheta_{2} < 0} \right)\), Since, because these two values \({\vartheta }_{1}{ \mathrm{and} \vartheta }_{2}\) are almost equal to each other, so\(\left(k{\vartheta }_{1}^{2}=2k{\vartheta }_{1}{\vartheta }_{2}\right)\), and therefore the third minor in this article is always negative), and also the fourth minor determinant \(\Big(-2{\gamma }_{2}^{2}k{\varrho }_{1}-2{\gamma }_{1}^{2}k{\varrho }_{2}+4hk{\varrho }_{1}{\varrho }_{2}+2{\gamma }_{1}{\gamma }_{2}k{\vartheta }_{1}-2{\gamma }_{2}^{2}k{\vartheta }_{1}+4hk{\varrho }_{2}{\vartheta }_{1}-hk{\vartheta }_{1}^{2}-2{\gamma }_{1}^{2}k{\vartheta }_{2}+2{\gamma }_{1}{\gamma }_{2}k{\vartheta }_{2}+4hk{\varrho }_{1}{\vartheta }_{2}+2hk{\vartheta }_{1}{\vartheta }_{2}-hk{\vartheta }_{2}^{2}+{\gamma }_{2}^{2}{\upsilon }_{1}^{2}-2h{\varrho }_{2}{\upsilon }_{1}^{2}-2h{\vartheta }_{2}{\upsilon }_{1}^{2}-2{\gamma }_{1}{\gamma }_{2}{\upsilon }_{1}{\upsilon }_{2}+2h{\vartheta }_{1}{\upsilon }_{1}{\upsilon }_{2}+2h{\vartheta }_{2}{\upsilon }_{1}{\upsilon }_{2}+{\gamma }_{1}^{2}{\upsilon }_{2}^{2}-2h{\varrho }_{1}{\upsilon }_{2}^{2}-2h{\vartheta }_{1}{\upsilon }_{2}^{2}>0\Big)\) be positive, (Considering that in this article, parameter \(k\) and \(h\) is a cost parameter and its value is large, and the rest of the parameters are coefficients and have small values, as a result, expressions with parameter \(k\) and \(h\) determine the value of the condition, so, \( \Big( 4hk\varrho_{1} \varrho_{2} + 2\gamma_{1} \gamma_{2} k\vartheta_{1} + 4hk\varrho_{2} \vartheta_{1} + 2\gamma_{1} \gamma_{2} k\vartheta_{2} + 4hk\varrho_{1} \vartheta_{2} + 2hk\vartheta_{1} \vartheta_{2} + 2h\vartheta_{1} \upsilon_{1} \upsilon_{2} + 2h\vartheta_{2} \upsilon_{1} \upsilon_{2} > 2\gamma_{2}^{2} k\varrho_{1} + 2\gamma_{1}^{2} k\varrho_{2} + 2\gamma_{2}^{2} k\vartheta_{1} + hk\vartheta_{1}^{2} + 2\gamma_{1}^{2} k\vartheta_{2} + hk\vartheta_{2}^{2} + 2h\varrho_{2} \upsilon_{1}^{2} + 2h\vartheta_{2} \upsilon_{1}^{2} + 2h\varrho_{1} \upsilon_{2}^{2} + 2h\vartheta_{1} \upsilon_{2}^{2} \Big), \) Due to the equality of similar parameters with each other and the small values of the parameters, almost identical values are removed from both sides of the equation. As a result, \(\big( {4hk\varrho_{1} \varrho_{2} + 4hk\varrho_{2} \vartheta_{1} + 4hk\varrho_{1} \vartheta_{2} > 2\gamma_{1}^{2} k\varrho_{2} + hk\vartheta_{1}^{2} + 2\gamma_{1}^{2} k\vartheta_{2} + 2h\varrho_{2} \upsilon_{1}^{2} + 2h\varrho_{1} \upsilon_{2}^{2} } \big)\), according to \(\left( h \right)\) is very big value, this term is always satisfied, and the fourth minor in this article is always positive) the values of decision variables will be optimal and exclusive. Note that, \(h\) and \(k\) are coefficients of investment cost on greening level and sales efforts and their values are much larger than other coefficients. Because these two parameters are the amount of investment to increase the levels of decision variables and are for a period and are very large numbers. However, the magnitude of these two parameters compared to others is part of the conditions of our model and this is not necessarily true for other models. Therefore, according to the conditions of the present problem, it can be claimed that the condition of concavity is established for the models. □

Appendix H: Proof of Theorem 3.6

By determining the second-order derivative of the profit function, it is obvious that a positive\(h\), and \(\Omega \) between 0 and 1 guarantees the concavity condition \(\left( { - h\left( {1 - {\Omega }} \right)} \right)\).□

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaefarian, T., Fander, A. & Yaghoubi, S. A dynamic game approach to demand disruptions of green supply chain with government intervention (case study: automotive supply chain). Ann Oper Res 336, 1965–2008 (2024). https://doi.org/10.1007/s10479-023-05432-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-023-05432-0

Keywords

Navigation