Skip to main content
Log in

General solutions of plane problem in one-dimensional quasicrystal piezoelectric materials and its application on fracture mechanics

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Based on the fundamental equations of piezoelasticity of quasicrystals (QCs), with the symmetry operations of point groups, the plane piezoelasticity theory of onedimensional (1D) QCs with all point groups is investigated systematically. The governing equations of the piezoelasticity problem for 1D QCs including monoclinic QCs, orthorhombic QCs, tetragonal QCs, and hexagonal QCs are deduced rigorously. The general solutions of the piezoelasticity problem for these QCs are derived by the operator method and the complex variable function method. As an application, an antiplane crack problem is further considered by the semi-inverse method, and the closed-form solutions of the phonon, phason, and electric fields near the crack tip are obtained. The path-independent integral derived from the conservation integral equals the energy release rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shechtman, D., Blech, I., Gratias, D., and Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 53, 1951–1953 (1984)

    Article  Google Scholar 

  2. Elser, V. Comment on QCs: a new class of ordered structures. Physical Review Letters, 54, 1730 (1985)

    Article  Google Scholar 

  3. Kramer, P. and Neri, R. On periodic and non-periodic space fillings obtained by projection. Acta Crystallographica, A40, 580–587 (1984)

    Article  MathSciNet  Google Scholar 

  4. Ding, D. H., Yang, W. G., Hu, C. Z., and Wang, R. H. Generalized elasticity theory of QCs. Physical Review B, 48, 7003–7009 (1993)

    Article  Google Scholar 

  5. Yang, W. G., Wang, R. H., Ding, D. H., and Hu, C. Z. Linear elasticity theory of cubic QCs. Physical Review B, 48, 6999–7002 (1993)

    Article  Google Scholar 

  6. Hu, C. Z., Yang, W. G., Wang, R. H., and Ding, D. H. Point groups and elastic properties of two-dimensional QCs. Acta Crystallographica, A52, 251–256 (1996)

    Article  Google Scholar 

  7. Hu, C. Z., Wang, R. H., and Ding, D. H. Symmetry groups, physical property tensors, elasticity and dislocations in QCs. Reports on Progress in Physics, 63, 1–39 (2000)

    Article  MathSciNet  Google Scholar 

  8. Fan, T. Y. and Mai, Y. W. Elasticity theory, fracture mechanics, and some relevant thermal properties of quasi-crystalline materials. Applied Mechanics Reviews, 57, 325–343 (2004)

    Article  Google Scholar 

  9. Liu, G. T., Fan, T. Y., and Guo, R. P. Governing equations and general solutions of plane elasticity of one-dimensional QCs. International Journal of Solids and Structures, 41, 3949–3959 (2004)

    Article  MATH  Google Scholar 

  10. Chen, W. Q., Ma, Y. L., and Ding, H. J. On three-dimensional elastic problems of one-dimensional hexagonal quasicrystal bodies. Mechanics Research Communications, 31, 633–641 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wang, X. The general solution of one-dimensional hexagonal quasicrystal. Mechanics Research Communications, 33, 576–580 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Wang, X. and Pan, E. Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals. Pramana - Journal of Physics, 70, 911–933 (2008)

    Article  Google Scholar 

  13. Gao, Y., Xu, S. P., and Zhao, B. S. General solutions of equilibrium equations for 1D hexagonal QCs. Mechanics Research Communications, 36, 302–308 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu, G. T., Guo, R. P., and Fan, T. Y. On the interaction between dislocations and cracks in one-dimensional hexagonal QCs. Chinese Physics, 2, 1149–1155 (2003)

    Google Scholar 

  15. Gao, Y., Zhao, B. S., and Xu, S. P. A theory of general solutions of plane problems in twodimensional octagonal QCs. Journal of Elasticity, 93, 263–277 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gao, Y. and Zhao, B. S. General solutions of three-dimensional problems for two-dimensional QCs. Applied Mathematical Model, 33, 3382–3391 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fan, T. Y. and Guo, L. H. The final governing equation and fundamental solution of plane elasticity of icosahedral QCs. Physics Letters A, 341, 235–239 (2005)

    Article  MATH  Google Scholar 

  18. Li, L. H. and Fan, T. Y. Final governing equation of plane elasticity of icosahedral QCs and general solution based on stress potential function. Chinese Physics Letters, 23, 2519–2521 (2006)

    Article  Google Scholar 

  19. Gao, Y. and Zhao, B. S. A general treatment of three-dimensional elasticity of QCs by an operator method. Physica Status Solidi, B, Basic Solid State Physics, 243, 4007–4019 (2006)

    Article  Google Scholar 

  20. Gao, Y. Governing equations and general solutions of plane elasticity of cubic QCs. Physics Letters A, 373, 885–889 (2009)

    Article  MATH  Google Scholar 

  21. Thiel, P. A. and Dubois, J. M. QCs reaching maturity for technological applications. Materials Today, 2, 3–7 (1999)

    Article  Google Scholar 

  22. Athanasiou, N. S., Politis, C., Spirlet, J. C., Baskoutas, S., and Kapaklis, V. The significance of valence electron concentration on the formation mechanism of some ternary aluminum-based QCs. International Journal of Modern Physics, B16, 4665–4683 (2002)

    Article  Google Scholar 

  23. Park, J. Y., Ogletree, D. F., Salmeron, M., Ribeiro, R. A., Canfield, P. C., Jenks, C. J., and Thiel, P. A. High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science, 309, 1354–1356 (2005)

    Article  Google Scholar 

  24. Park, J. Y., Sacha, G. M., Enachescu, M., Ogletree, D. F., Ribeiro, R. A., Canfield, P. C., Jenks, C. J., Thiel, P. A., Sáenz, J. J., and Salmeron, M. Sensing dipole fields at atomic steps with combined scanning tunneling and force microscopy. Physical Review Letters, 95, 136802 (2005)

    Article  Google Scholar 

  25. Lipp, H., Engel, M., and Trebin, H. R. Phason dynamics in one-dimensional lattices. Physical Review B, 81, 064302 (2010)

    Article  Google Scholar 

  26. Engel, M., Umezaki, M., and Trebin, H. R. Dynamics of particle flips in two-dimensional QCs. Physical Review B, 82, 134206 (2010)

    Article  Google Scholar 

  27. Guo, J. H., Yu, J., and Si, R. A semi-inverse method of a Griffith crack in one-dimensional hexagonal QCs. Applied Mathematics and Computation, 219, 7445–7449 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Guo, J. H., Yu, J., and Xing, Y. M. Anti-plane analysis on a finite crack in a one-dimensional hexagonal quasicrystal strip. Mechanics Research Communications, 52, 40–45 (2013)

    Article  Google Scholar 

  29. Jazbec, S., Vrtnik, S., Jagličić, Z., Kashimoto, S., Ivkov, J., Popčcević, P., Smontara, A., Kim, H. J., Kim, J. G., and Dolinšek, J. Electronic density of states and metastability of icosahedral Au-Al-Yb quasicrystal. Journal of Alloys and Compounds, 586, 343–348 (2014)

    Article  Google Scholar 

  30. Yang, W. G., Wang, R., Ding, D. H., and Hu, C. Z. Elastic strains induced by electric fields in QCs. Journal of Physics: Condensed Matter, 7, L499–L502 (1995)

    Google Scholar 

  31. Hu, C. Z., Wang, R., Ding, D. H., and Yang, W. Piezoelectric effects in QCs. Physical Review B, 56, 2463–2468 (1997)

    Article  Google Scholar 

  32. Rao, R. M. K., Rao, H. P., and Chaitanya, B. S. K. Piezoelectricity in QCs: a group-theoretical study. Pramana - Journal of Physics, 68, 481–487 (2007)

    Article  Google Scholar 

  33. Grimmer, H. The piezoelectric effect of second order in stress or strain: its form for crystals and QCs of any symmetry. Acta Crystallographica A, 63, 441–446 (2007)

    Article  Google Scholar 

  34. Fujiwara, T. and Ishii, Y. Quasicrystals, Handbook of Metal Physics, Elsevier, Amsterdam (2008)

    Google Scholar 

  35. Suck, J. B., Schreiber, M., and Haussler, P. Quasicrystals: An Introduction to Structure, Physical Properties and Applications, Springer-Verlag, Berlin (2010)

    Google Scholar 

  36. Fan, T. Y. Mathematical Theory of Elasticity of QCs and Its Applications, Science Press, Beijing (2011)

    Google Scholar 

  37. Altay, G. and Dökmeci, M. C. On the fundamental equations of piezoelasticity of quasicrystal media. International Journal of Solids and Structures, 49, 3255–3262 (2012)

    Article  Google Scholar 

  38. Li, X. Y., Li, P. D., Wu, T. H., Shi, M. X., and Zhu, Z. W. Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Physics Letters A, 378, 826–834 (2014)

    Article  MathSciNet  Google Scholar 

  39. Zhang, L. L., Zhang, Y. M., and Gao, Y. General solutions of plane elasticity of one-dimensional orthorhombic quasicrystals with piezoelectric effect. Physics Letters A, 378, 2768–2776 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  40. Merlin, R., Bajema, K., Clarke, R., Yuang, F., and Bhattacharya, P. K. Quasiperiodic GaAs-AlAs heterostructures. Physical Review Letters, 55, 1768–1770 (1985)

    Article  Google Scholar 

  41. Wang, R. H., Yang, W. G., Hu, C. Z., and Ding, D. H. Point and space groups and elastic behaviours of one-dimensional quasicrystals. Journal of Physics: Condensed Matter, 9, 2411–2422 (1997)

    Google Scholar 

  42. Wang, M. Z. and Wang, W. Completeness and nonuniqueness of general solutions of transversely isotropic elasticity. International Journal of Solids and Structures, 32, 501–513 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  43. Wang, W. and Shi, M. X. On the general solutions of transversely isotropic elasticity. International Journal of Solids and Structures, 35, 3283–3297 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  44. Pak, Y. E. Crack extension force in a piezoelectric material. Journal of Applied Physics, 57, 647–653 (1990)

    MATH  Google Scholar 

  45. Mariano, P. M. and Planas, J. Phason self-actions in quasicrystals. Physica D: Nonlinear Phenomena, 249, 46–57 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Guo.

Additional information

Project supported by the National Nature Science Foundation of China (Nos. 11262012, 11262017, 11462020, and 10761005) and the Scientific Research Key Program of Inner Mongolia University of Technology (No. ZD201219)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Guo, J., Pan, E. et al. General solutions of plane problem in one-dimensional quasicrystal piezoelectric materials and its application on fracture mechanics. Appl. Math. Mech.-Engl. Ed. 36, 793–814 (2015). https://doi.org/10.1007/s10483-015-1949-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-1949-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation