Skip to main content

Advertisement

Log in

Precision aquaculture: a short review on engineering innovations

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Aquaculture is presented as a sustainable alternative to the consumption of wild fish, for example, reducing inputs (such as feed), optimizing outputs, and reducing pollution. Extending to the agricultural framework, in this context, different technologies are being used to diminish those environmental hazards, giving rise to the precision agriculture/aquaculture being this a management concept based on observing, measuring, and responding space/temporal variability of productions. The scope of the precision aquaculture is to apply control-engineering principles to the production, to direct farmers to a better monitoring, control, and documentation of biological processes in fish farms. The aim of this review is to show an overview (enriched by a terms mapping analysis) of the precision aquaculture engineering innovations, with some examples of commercial systems, even if most of them are not specifically addressed in the precision aquaculture framework, in terms of: computer vision for animal monitoring, environmental monitoring tools, and sensor network (i.e., wireless sensor network, and long-range), robotics, and finally data interpretation and decision tools (i.e., algorithms, Internet of Things, and Decision Support Systems). Over the Internet of Things, cyber-physical systems communicate and cooperate with each other and with humans in real-time both internally and across organizational services offered and used by participants of the value chain. To increase the production and ameliorate the fish product quality and animal welfare issues, it is becoming even more important to monitor and control the production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Funding

This work was supported by the sub-project “Tecnologie digitali integrate per il rafforzamento sostenibile di produzioni e trasformazioni agroalimentari (AgroFiliere)” (AgriDigit program) financed by the Ministry of Agricultural, Food, Forestry and Tourism Policies (MiPAAFT) (DM 36503/7305/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Costa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonucci, F., Costa, C. Precision aquaculture: a short review on engineering innovations. Aquacult Int 28, 41–57 (2020). https://doi.org/10.1007/s10499-019-00443-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-019-00443-w

Keywords

Navigation