Skip to main content

Advertisement

Log in

Classical and non-classical time history and spectrum analysis of soil-structure interaction systems

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

The problem of non-classical dynamic analysis of structures resting on flexible bases is studied in this paper. Because of presence of the underlying soil in the dynamic model of structure that acts like an energy sink, the damping matrix is not proportional to structural mass and stiffness and theoretically a non-classical approach should be followed in modal analysis. Considering one to twenty-story buildings, two types of soils, and several suits of ground motions each containing ten earthquake records specifically selected for each building, the seismic responses are calculated using a time history modal analysis in this paper. Three cases are considered: fixed-base buildings with classical analysis, flexible-base buildings with classical and non-classical analysis. It is shown that the code-based soil-structure interaction (SSI) analysis for the fundamental mode is not always safe. Also, on each soil type, instances of importance of accounting for the non-classical nature of the SSI system are clarified. Cases for which the base flexibility should be considered for the higher modes too are distinguished. Finally, simple correction factors are derived for converting the fixed-base responses of moment frames, resting on surface foundations on medium and soft soils, to the responses including soil-structure interaction effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • American Institute of Steel Construction (2005) Specification for structural steel buildings. AISC-ASD, Chicago

    Google Scholar 

  • American Society of Civil Engineers (2010) Minimum design loads for buildings and other structures, ASCE standard ASCE/SEI 7-10 including Supplement no. 1, American Society of Civil Engineers, Reston, Virginia

  • American Society of Civil Engineers (2013) Seismic rehabilitation of existing buildings, ASCE/SEI 41-13. ASCE Publications, Reston

    Google Scholar 

  • Ashour SA (1987) Elastic seismic response of buildings with supplemental damping. Ph.D. Dissertation, Department of Civil Engineering, University of Michigan

  • Bommer JJ, Mendis R (2005) Scaling of spectral displacement ordinates with damping ratios. J Earthq Eng Struct Dyn 34:145–165

    Article  Google Scholar 

  • Computers and Structures, Inc. (2014) SAP2000, an integrated analysis and design software, version 17

  • Eurocode No. 8 (2003) Design of structures for earthquake resistance, part 1: general rules, seismic actions and rules for buildings. CEN, Brussels

    Google Scholar 

  • Foss KA (1958) Coordinates which uncouple the equations of motion of damped linear dynamic system. J Appl Mech ASME 25:361–364

    Google Scholar 

  • Gazetas G (1991) Formulas and charts for impedances of surface and embedded foundations. J Geotech Eng 117:1363–1381

    Article  Google Scholar 

  • Internet Site. http://peer.berkeley.edu/peer_ground_motion_database. Accessed May 2013

  • Lin YY, Chang KC (2003) A Study on damping reduction factor for buildings under earthquake ground motions. J Struct Eng 129(2):206–214

    Article  Google Scholar 

  • Newmark NM, Hall WJ (1982) Earthquake spectra and design. Engineering monographs on earthquake criteria, structural design, and strong motion records, earthquake engineering research institute, Berkeley, California

  • Pekcan G, Mander JB, Chen SS (1999) Fundamental considerations for the design of non-linear viscous dampers. J Earthq Eng Struct Dyn 28:1405–1425

    Article  Google Scholar 

  • Ramirez OM, Constantinou MC, Whittaker AS, Kircher CA, Chrysostomou CZ (2002) Elastic and inelastic seismic response of buildings with damping systems. Earthq Spectra 18(3):531–547

    Article  Google Scholar 

  • Sadek F, Mohraz B, Riley MA (2000) Linear procedures for structures with velocity dependent dampers. J Struct Eng 126:887–895

    Article  Google Scholar 

  • Sinha R, Igusa T (1995) CQC and SRSS methods for non-classically damped structures. J Earthq Eng Struct Dyn 24:615–619

    Article  Google Scholar 

  • Song J, Chu Y, Liang Z, Lee GC (2008) Response-spectrum-based analysis for generally damped linear structures. In: The 14 world conference on earthquake engineering, China, Beijing

  • Veletsos AS, Ventura CE (1986) Modal analysis of non-classical damped linear system. Earthquake Eng Struct Dynam 14:217–243

    Article  Google Scholar 

  • Wu JP, Hanson RD (1989) Study of inelastic spectra with high damping. J Struct Eng 115:1412–1431

    Article  Google Scholar 

  • Zhou XY, Yu RF (2008) Mode superposition method of non stationary seismic responses for non classically damped linear systems. J Earthquake Eng 12:473–516

    Article  Google Scholar 

  • Ziaeifar M, Tavousi S (2005) Mass participation in non-classical mass isolated systems. Asian J Civ Eng (Build Hous) 6:273–301

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Behnamfar.

Appendices

Appendix 1: Equations of motion

The equations of motion of the system of Fig. 1 can be written as follows:

$$\left[ M \right] \left\{ {\begin{array}{*{20}c} {\{ {\ddot{u}}\} } \\ {{\ddot{u}}_{b} } \\ {\ddot{\psi }} \\ \end{array} } \right\} + \left[ C \right] \left\{ {\begin{array}{*{20}c} {\{ \dot{u}\} } \\ {\dot{u}_{b} } \\ {\dot{\psi }} \\ \end{array} } \right\} + \left[ K \right] \left\{ {\begin{array}{*{20}c} {\{ u\} } \\ {u_{b} } \\ \psi \\ \end{array} } \right\} = - \left\{ {\begin{array}{*{20}c} {\left\{ m \right\}} \\ {m_{b} + \mathop \sum \limits_{1}^{n} m_{i} } \\ {\mathop \sum \limits_{1}^{n} m_{i} h_{i} } \\ \end{array} } \right\}{\ddot{u}}_{g} \left( t \right) = \{ p(t)\}$$
(24)

in which:

$$\left[ M \right] = \left[ {\begin{array}{*{20}c} {[m]} & {\{ m\} } & {\{ mh\} } \\ {\{ m\}^{T} } & {m_{b} + \mathop \sum \limits_{1}^{n} m_{i} } & {\mathop \sum \limits_{1}^{n} m_{i} h_{i} } \\ {\{ mh\}^{T} } & {\mathop \sum \limits_{1}^{n} m_{i} h_{i} } & {I + \mathop \sum \limits_{1}^{n} m_{i} h_{i}^{2} } \\ \end{array} } \right]$$
(25)
$$\left[ C \right] = \left[ {\begin{array}{*{20}c} {[c]} & {\{ 0\} } & {\{ 0\} } \\ {\{ 0\}^{T} } & {c_{uu} } & 0 \\ {\{ 0\}^{T} } & 0 & {c_{\psi \psi } } \\ \end{array} } \right]$$
$$\left[ K \right] = \left[ {\begin{array}{*{20}c} {[k]} & {\{ 0\} } & {\{ 0\} } \\ {\{ 0\}^{T} } & {k_{uu} } & 0 \\ {\{ 0\}^{T} } & 0 & {k_{\psi \psi } } \\ \end{array} } \right]$$

and:

$$\left[ m \right] = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {m_{1} } \\ \\ \\ \end{array} } & {\begin{array}{*{20}c} {\begin{array}{*{20}c} & & \\ \end{array} } \\ {\begin{array}{*{20}c} {m_{2} } & & 0 \\ \end{array} } \\ {\begin{array}{*{20}c} { } & \ddots & \\ \end{array} } \\ \end{array} } & {\begin{array}{*{20}c} \\ \\ \\ \end{array} } \\ {\begin{array}{*{20}c} \\ \\ \end{array} } & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ \\ \end{array} } & {\begin{array}{*{20}c} \\ \\ \end{array} } & {\begin{array}{*{20}c} {m_{n - 1} } \\ \\ \end{array} } \\ \end{array} } & {\begin{array}{*{20}c} \\ {m_{n} } \\ \end{array} } \\ \end{array} } \right]$$
$$[c] = \left[ {\begin{array}{*{20}c} {c_{1} } \hfill & { - c_{2} } \hfill & \cdots \hfill & 0 \hfill & 0 \hfill \\ { - c_{2} } \hfill & {c_{1} + c_{2} } \hfill & { - c_{3} } \hfill & 0 \hfill & 0 \hfill \\ \vdots \hfill & \vdots \hfill & \ddots \hfill & \vdots \hfill & \vdots \hfill \\ 0 \hfill & 0 \hfill & \cdots \hfill & {c_{{n - 1}} + c_{{n - 2}} } \hfill & { - c_{n} } \hfill \\ 0 \hfill & 0 \hfill & \cdots \hfill & { - c_{n} } \hfill & {c_{n} + c_{{n - 1}} } \hfill \\ \end{array} } \right]$$
(26)
$$[K] = \left[ {\begin{array}{*{20}c} {k_{1} + k_{2} } \hfill & { - k_{2} } \hfill & \cdots \hfill & 0 \hfill & 0 \hfill \\ { - k_{2} } \hfill & {k_{2} + k_{3} } \hfill & { - k_{3} } \hfill & 0 \hfill & 0 \hfill \\ \vdots \hfill & { - k_{3} } \hfill & \ddots \hfill & \vdots \hfill & \vdots \hfill \\ 0 \hfill & \vdots \hfill & \cdots \hfill & {k_{n} + k_{{n + 1}} } \hfill & { - k_{{n - 1}} } \hfill \\ 0 \hfill & 0 \hfill & \cdots \hfill & { - k_{{n - 1}} } \hfill & {k_{n} } \hfill \\ \end{array} } \right]$$

and:

$$\left\{ m \right\} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {m_{1} } & {m_{2} } \\ \end{array} } & {\begin{array}{*{20}c} \cdots & {m_{n} } \\ \end{array} } \\ \end{array} } \right]^{T}$$
(27)
$$\left\{ {mh} \right\} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {m_{1} h_{1} } & {m_{2} h_{2} } \\ \end{array} } & {\begin{array}{*{20}c} \ldots & {m_{n} h_{n} } \\ \end{array} } \\ \end{array} } \right]^{T}$$
$$\left\{ u \right\} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {u_{1} } & {u_{2} } \\ \end{array} } & {\begin{array}{*{20}c} \cdots & {u_{n} } \\ \end{array} } \\ \end{array} } \right]^{T}$$
$$I = I_{b} + \mathop \sum \limits_{i = 1}^{n} I_{i}$$

In the above equations, \(m_{i} \;{\text{and}}\; m_{b}\; \left( {i = 1, 2, \ldots ,n; n = {\text{number of stories}}} \right)\) are mass of the ith floor and the foundation, respectively, \(h_{i}\) is the height of the ith floor from the base, \(I_{i}\) and \(I_{b}\) are respectively the mass moments of inertia of the ith story and the foundation, \(c_{i}\) and \(k_{i}\) are the damping coefficient and the lateral relative stiffness of the ith story, respectively, \(c_{jj}\) and \(k_{jj}\) with \(j = u\) or \(\psi\) are respectively the damping and stiffness impedances of the supporting medium in translational and rotational directions, \(u_{i}\), \(u_{b}\) and \(u_{g}\) are the horizontal displacements of the ith story, the foundation, and ground with respect to a fixed reference, respectively, \(\psi\) is the rotational component of motion of foundation, and a dot represents derivation with respect to time.

Appendix 2: The free vibration response characteristics

The homogeneous solution of Eq. (24) can be written as:

$$\{ U\} = \{ \psi \} e^{rt}$$
(28)

in which r and \(\left\{ \psi \right\}\) are the characteristic value and vector, respectively, and \(\{ U\}\) is defined in Eq. (2). Substitution of (28) in (24) with p(t) = 0 gives:

$$\left( {r^{2} \left[ M \right] + r\left[ C \right] + \left[ K \right]} \right)\left\{ \psi \right\} = \{ 0\}$$
(29)

Foss (1958) showed that the characteristic Eq. (29) can be reduced to:

$$\left( {r\left[ A \right] + \left[ B \right]} \right)\left\{ Z \right\} = \{ 0\}$$
(30)

in which:

$$\left\{ Z \right\} = \left\{ {\begin{array}{*{20}c} {{\text{r}}\{ \psi \} } \\ {\{ \psi \} } \\ \end{array} } \right\}$$
(31)
$$\left[ A \right] = \left[ {\begin{array}{*{20}c} {[0]} & {[{\text{M}}]} \\ {[{\text{M}}]} & {[{\text{C}}]} \\ \end{array} } \right]_{{2{\text{N}} \times 2{\text{N}}}}$$
$$\left[ {\text{B}} \right] = \left[ {\begin{array}{*{20}c} { - [M]} & {[0]} \\ {[0]} & {[{\text{K}}]} \\ \end{array} } \right]_{{2{\text{N}} \times 2{\text{N}}}}$$

The dimension of Eq. (30) is 2 N where N = n + 2 with the additional two DOF’s of the foundation included. Its solution results in N complex conjugates for r and \(\uppsi\). If \(r_{j}\) and \(\bar{r}_{j}\) are a pair of characteristic values and \(\{\uppsi\}\) and \(\{ {\bar{\psi }}\}\) a pair of characteristic vectors where the over bar denotes complex conjugate, then the following relations are introduced:

$$\left. {\begin{array}{*{20}c} {r_{j} } \\ {\bar{r}_{j} } \\ \end{array} } \right\} = - q_{j} \pm \tilde{p}_{j}$$
(32)
$$\left. {\begin{array}{*{20}c} {\{ \psi_{j} \} } \\ {\{ \bar{\psi }_{j} \} } \\ \end{array} } \right\} = \{ \phi_{\text{j}} \} \pm i\{ \chi_{j} \}$$

in which \(i = \sqrt { - 1}\), \(q_{j}\) and \(\tilde{p}_{j}\) are real constants, and, \(\{ \phi_{\text{j}} \}\) and \(\{ \chi_{j} \}\) are N-component real vectors. Then the new parameters \(p_{j}\) and \(\xi_{j}\) are defined as follows:

$$p_{j} = \sqrt {q_{j}^{2} + \tilde{p}_{j}^{2} }$$
(33)
$$\upxi_{\text{j}} = \frac{{q_{j} }}{{p_{\text{j}} }}$$

Then:

$$\left. {\begin{array}{*{20}c} {r_{j} } \\ {\bar{r}_{j} } \\ \end{array} } \right\} = - \xi_{j} p_{j} \pm i\tilde{p}_{j}$$
(34)
$${\tilde{\text{p}}}_{j} = p_{\text{j}} \sqrt {1 -\upxi_{\text{j}}^{2} }$$

Substituting Eq. (32) in (28) results in:

$$\left\{ {{\text{U}}_{\text{j}} } \right\} = e^{{ -\upxi_{\text{j}} p_{\text{j}} t}} \left( {\{ \phi_{\text{j}} \} \pm i\{ \chi_{\text{j}} \} } \right)e^{{ \pm {\tilde{\text{p}}}_{j} t}}$$
(35)

The displacement response in Eq. (35) consists of two parts: the damped amplitude and the oscillation function, which are as follows:

$${\text{Displacement}}\;{\text{amplitude}} = e^{{ -\upxi_{\text{j}} p_{\text{j}} t}} (\{ \phi_{\text{j}} \} \pm i\{ \chi_{j} \} )$$
(36)
$${\text{Oscillation}}\;{\text{function}} = e^{{ \pm {\tilde{\text{p}}}_{j} t}} = \cos ({\tilde{\text{p}}}_{j} t) \pm i\sin ({\tilde{\text{p}}}_{j} t)$$
(37)

Equation (36) shows that \(\xi_{j}\) is the damping ratio of the jth mode while \(p_{\text{j}}\) and \({\tilde{\text{p}}}_{j}\) show the undamped and damped frequencies of the jth mode, respectively, all being positive values.

The total response in the jth mode (j = 1, 2, …, N) can be calculated combining contributions from both complex conjugates as:

$$\{ U_{j} \} = C_{j} \{ \psi_{j} \} e^{{r_{j} t}} + \bar{C}_{j} \{ \bar{\psi }_{j} \} e^{{\bar{r}_{j} t}}$$
(38)

in which \(C_{j}\) is a complex constant. Equation (38) can be simplified as:

$$\left\{ {U_{j} } \right\} = 2Re[C_{j} \{ \psi_{j} \} e^{{r_{j} t}} ]$$
(39)

in which Re denotes real value. Summing the combinations of all modes, the total response at each degree of freedom can be written as:

$$\left\{ U \right\} = 2\mathop \sum \limits_{j = 1}^{N} Re\left[ {C_{j} \{ \psi_{j} \} e^{{r_{j} t}} } \right]$$
(40)

Using modal orthogonality conditions, it can be shown that (Veletsos and Ventura 1986):

$$C_{j} = \frac{{r_{j} \{ \psi_{j} \}^{T} \left[ M \right]\left\{ {U(0)} \right\} + \{ \psi_{j} \}^{T} \left[ C \right]\left\{ {U(0)} \right\} + \{ \psi_{j} \}^{T} \left[ M \right]\left\{ {\dot{U}\left( 0 \right)} \right\}}}{{2r_{j} \{ \psi_{j} \}^{T} \left[ M \right]\{ \psi_{j} \} + \{ \psi_{j} \}^{T} \left[ C \right]\{ \psi_{j} \} }}$$
(41)

in which \(\left\{ {U(0)} \right\}\) and \(\left\{ {\dot{U}\left( 0 \right)} \right\}\) are the vectors of initial displacement and initial velocity of the system.

Appendix 3: The displacement response to base acceleration

Response of the system of Fig. (1) to a base acceleration that is equivalent to a constant initial velocity at all horizontal degrees of freedom, can be calculated from Eqs. (40) and (41) with the following initial values:

$$\left\{ {U\left( 0 \right)} \right\} = \{ 0\} ,\left\{ {\dot{U}\left( 0 \right)} \right\} = \left\{ {\begin{array}{*{20}c} 1 \\ \vdots \\ 1 \\ \begin{aligned} 1 \hfill \\ 0 \hfill \\ \end{aligned} \\ \end{array} } \right\}v_{0}$$
(42)

in which \(\nu_{0}\) is the value of the initial velocity. Substituting Eq. (42) in (41) results in:

$$B_{j} = \frac{{\{ \psi_{j} \}^{T} \left[ M \right]\left\langle {\begin{array}{*{20}c} 1 & \ldots \\ \end{array} \begin{array}{*{20}c} 1 & 1 & 0 \\ \end{array} } \right\rangle_{n + 2}^{T} }}{{2r_{j} \{ \psi_{j} \}^{T} \left[ M \right]\{ \psi_{j} \} + \{ \psi_{j} \}^{T} \left[ C \right]\{ \psi_{j} \} }}$$
(43)

in which \(B_{j} = C_{j} /\nu_{0}\). Now, Eq. (43) is substituted in (40) to result in:

$$\left\{ U \right\} = 2\mathop \sum \limits_{j = 1}^{N} Re[B_{j} \{ \psi_{j} \} v_{0} e^{{r_{j} t}} ] .$$
(44)

To write the response in the real form, the amplitude in (44) is decomposed as follows:

$$2B_{j} \{ \psi_{j} \} = \left\{ {\beta_{j}^{v} } \right\} + i\{ \gamma_{j}^{v} \}$$
(45)

in which \(\left\{ {\beta_{j}^{\nu } } \right\}\) and \(\left\{ {\gamma_{j}^{\nu } } \right\}\) are real and imaginary parts of the term on the left. Substituting (45) in (44) gives:

$$\{ U\} = \mathop \sum \limits_{j = 1}^{N} e^{{ - \xi_{j} p_{j} t}} \left[ {\left\{ {\beta_{j}^{v} } \right\} \cos \left( {\tilde{p}_{j} t} \right) - \{ \gamma_{j}^{v} \} \sin \left( {\tilde{p}_{j} t} \right)} \right]v_{0}$$
(46)

The unit impulse response function for the system is introduced as:

$$h_{j} ({\text{t}}) = \frac{1}{{{\tilde{\text{p}}}_{j} }}e^{{ -\upxi_{\text{j}} p_{\text{j}} t}} \sin \left( {{\tilde{\text{p}}}_{j} t} \right)$$
(47)

The derivative of Eq. (47) is:

$$\dot{h}_{j} ({\text{t}}) = e^{{ -\upxi_{\text{j}} p_{\text{j}} t}} \left[ {\cos \left( {{\tilde{\text{p}}}_{j} t} \right) - \frac{{\upxi_{\text{j}} }}{{\sqrt {1 -\upxi_{\text{j}}^{2} } }}\sin \left( {{\tilde{\text{p}}}_{j} t} \right)} \right]$$
(48)

Replacing (47) and (48) in (46) results in:

$$\{ U\} = \mathop \sum \limits_{j = 1}^{N} \left[ {\left\{ {\alpha_{j}^{v} } \right\} p_{j} h_{j} (t) - \{ \beta_{j}^{v} \} \dot{h}_{j} \left( t \right)} \right]v_{0}$$
(49)

in which:

$$\left\{ {\alpha_{j}^{v} } \right\} =\upxi_{\text{j}} \left\{ {\beta_{j}^{v} } \right\} - \sqrt {(1 -\upxi_{\text{j}}^{2} )} \{ \gamma_{j}^{v} \}$$
(50)

For calculating the response at \(t_{0} = \tau\) to a base acceleration \({\ddot{u}}_{g} (t)\), the velocity \(\nu (\tau )\) is computed as:

$$v\left( t \right) = - {\ddot{u}}_{g} \left( \tau \right)d\tau$$
(51)

If Eq. (51) is substituted in (49) and integrated to the arbitrary time \(t\), the dynamic response will be resulted as Eq. (4).

Appendix 4: The base shear

To calculate the base shear due to ground motion, first the vector of lateral story forces is computed using (24) as:

$$\left\{ f \right\} = \left[ M \right]\{ {\ddot{U}}\}^{total} = - (\left[ K \right]\left\{ U \right\} + [C]\{ \dot{U}\} )$$
(52)

\(\left\{ {\dot{U}} \right\}\) and \(\left\{ U \right\}\) are determined from (44) and replaced in (52) to give:

$$\left\{ {f(t)} \right\} = 2\mathop \sum \limits_{j = 1}^{N} Re\left\{ {\left[ {\left[ K \right]\left\{ {\psi_{j} } \right\} + r_{j} [C]\left\{ {\psi_{j} } \right\}} \right]B_{j} v_{0} e^{{r_{j} t}} } \right\}$$
(53)

Using the homogenous form of (24) with (28) in (53), \(f\left( {\,t\,} \right)\) is written as:

$$\left\{ {f(t)} \right\} = - 2\mathop \sum \limits_{j = 1}^{N} Re\left\{ {r_{j}^{2} \left[ M \right]\{ \psi_{j} \} B_{j} v_{0} e^{{r_{j} t}} } \right\}$$
(54)

Using Eqs. (45), (47), and (48) in (54) and integrating, give the vector of lateral forces as follows:

$$\left\{ {f(t)} \right\} = \mathop \sum \limits_{j = 1}^{N} e^{{ - \xi_{j} p_{j} t}} \left[ M \right]\left\{ {\left[ {\left( {p_{j}^{2} - 2\xi_{j}^{2} p_{j}^{2} } \right)\left( {\left\{ {\beta_{j}^{v} } \right\} \cos \left( {\tilde{p}_{j} t} \right) - \{ \gamma_{j}^{v} \} \sin \left( {\tilde{p}_{j} t} \right)} \right)} \right] + \left[ {\left( { - 2i\xi_{j} p_{j}^{2} \sqrt {1 - \xi_{j}^{2} } } \right)\left( {\left\{ {\beta_{j}^{v} } \right\} \sin \left( {\tilde{p}_{j} t} \right) + \{ \gamma_{j}^{v} \} \cos \left( {\tilde{p}_{j} t} \right)} \right)} \right]} \right\}v_{0}$$
(55)

in which:

$$\left\{ {\omega_{j}^{v} } \right\} =\upxi_{j} \left\{ {\gamma_{j}^{v} } \right\} + \sqrt {1 -\upxi_{j}^{2} } \left\{ {\beta_{j}^{v} } \right\}$$
(56)

Equation (55) can also be written as:

$$\left\{ {f(t)} \right\} = \mathop \sum \limits_{{{\text{j}} = 1}}^{\text{N}} \left\{ {\alpha_{j}^{Mv} } \right\} p_{\text{j}} V_{j} ({\text{t}}) + \mathop \sum \limits_{{{\text{j}} = 1}}^{\text{N}} \left\{ {\beta_{j}^{Mv} } \right\}\dot{D}_{j} \left( {\text{t}} \right) + \mathop \sum \limits_{{{\text{j}} = 1}}^{\text{N}} \left\{ {\omega_{j}^{Mv} } \right\} p_{\text{j}} V_{j} ({\text{t}}) + \mathop \sum \limits_{{{\text{j}} = 1}}^{\text{N}} \left\{ {\gamma_{j}^{Mv} } \right\}\dot{D}_{j} \left( {\text{t}} \right)$$
(57)

where:

$$\left\{ {\alpha_{j}^{Mv} } \right\} = \left( {p_{j} + 2\xi_{j}^{2} p_{j} } \right)\left[ M \right]\left\{ {\alpha_{j}^{v} } \right\}$$
$$\left\{ {\beta_{j}^{Mv} } \right\} = \left( {p_{j} + 2\xi_{j}^{2} p_{j} } \right)\left[ M \right]\left\{ {\beta_{j}^{v} } \right\}$$
$$\left\{ {\omega_{j}^{Mv} } \right\} = \left( { - 2\xi_{j} p_{j}^{2} \sqrt {1 - \xi_{j}^{2} } } \right)\left\{ {\omega_{j}^{v} } \right\}$$
(58)
$$\left\{ {\gamma_{j}^{Mv} } \right\} = \left( { - 2\xi_{j} p_{j}^{2} \sqrt {1 - \xi_{j}^{2} } } \right)\left\{ {\gamma_{j}^{v} } \right\}$$

Then the base shear is computed as the summation of lateral story forces resulting in Eq. (6).

Appendix 5: Characteristics of the selected records

The earthquake records selected with the criteria of this study are described in the following table.

Order

NGA no.

EQ. name

Date

Station

Soil type

Distance (km)

Max Acc. (g)

1

169

Imperial Valley-06

10/15/79

DELTA

D

22.0

0.28

2

178

Imperial Valley-06

10/15/79

El Centro Array #3

E

12.85

0.26

3

726

Superstition Hills-02

11/24/87

Salton Sea Wildlife Refuge

E

25.88

0.13

4

732

Loma Prieta

10/18/89

APEEL 2—Redwood City

E

43.23

0.08

5

777

Loma Prieta

10/15/79

HOLLISTER CITY HALL

D

27.6

0.23

6

778

Loma Prieta

10/18/89

Hollister Differential Array

D

24.8

0.26

7

786

Loma Prieta

10/18/89

Palo Alto—1900 Embarc

D

30.81

0.21

8

806

Loma Prieta

10/18/89

Sunnyvale Colton Ave

D

24.23

0.21

9

953

Northridge-01

01/17/94

Beverly Hills—14145 Mulhol

D

17.15

0.55

10

987

Northridge-01

1/17/94

LA—Centinela St

D

28.3

0.25

11

995

Northridge-01

01/17/94

LA—Hollywood Stor FF

D

24.03

0.37

12

996

Northridge-01

01/17/94

LA—FARING RD

D

20.81

0.34

13

1001

Northridge-01

01/17/94

LA—S Grand Ave

D

33.99

0.27

14

1003

Northridge-01

01/17/94

LA—Saturn St

D

27.01

0.45

15

1038

Northridge-01

1/17/94

Montebello Bluff

E

45.03

0.15

16

1044

Northridge-01

01/17/94

Newhall—Fire Sta

D

5.92

0.70

17

1063

Northridge-01

1/17/94

Rinaldi Receiving Sta

D

6.5

0.63

18

1085

Northridge-01

01/17/94

SYLMAR-CONVERTER STA-EAST

D

5.19

0.65

19

1087

Northridge-01

01/17/94

Tarzana—Cedar Hill A

D

15.6

0.99

20

1107

Kobe, Japan

01/16/95

Kakogawa

D

22.5

0.35

21

1111

Kobe, Japan

01/16/95

Nishi—Akashi

E

7.08

0.49

22

1113

Kobe, Japan

01/16/95

Osaj

E

21.35

0.08

23

1116

Kobe, Japan

01/16/95

Shin—Osaka

E

19.15

0.23

24

1119

Kobe, Japan

01/16/95

Takarazu

E

0.27

0.71

25

1120

Kobe, Japan

01/16/95

Takatori

E

1.47

0.65

26

1180

Chi–Chi, Taiwan

09/20/99

CHY002

E

24.96

0.13

27

1183

Chi–Chi, Taiwan

09/20/99

CHY008

E

40.43

0.12

28

1186

Chi–Chi, Taiwan

09/20/99

CHY014

D

34.18

0.24

29

1187

Chi–Chi, Taiwan

09/20/99

CHY015

D

38.13

0.16

30

1194

Chi–Chi, Taiwan

09/20/99

CHY025

E

19.07

0.15

31

1196

Chi–Chi, Taiwan

09/20/99

CHY027

E

41.99

0.06

32

1197

Chi–Chi, Taiwan

09/20/99

CHY028

D

3.12

0.79

33

1199

Chi–Chi, Taiwan

09/20/99

CHY032

E

35.43

0.09

34

1201

Chi–Chi, Taiwan

09/20/99

CHY034

D

14.82

0.30

35

1203

Chi–Chi, Taiwan

09/20/99

CHY036

D

16.04

0.26

36

1204

Chi–Chi, Taiwan

09/20/99

CHY039

E

31.87

0.11

37

1205

Chi–Chi, Taiwan

09/20/99

CHY041

E

19.83

0.46

38

1228

Chi–Chi, Taiwan

09/20/99

CHY076

E

42.15

0.08

39

1233

Chi–Chi, Taiwan

09/20/99

CHY082

E

36.09

0.07

40

1236

Chi–Chi, Taiwan

09/20/99

CHY088

D

37.48

0.18

41

1238

Chi–Chi, Taiwan

09/20/99

CHY092

E

22.69

0.10

42

1240

Chi–Chi, Taiwan

09/20/99

CHY094

E

37.1

0.06

43

1246

Chi–Chi, Taiwan

09/20/99

CHY104

E

18.02

0.18

44

1478

Chi–Chi, Taiwan

09/20/99

TCU033

D

40.88

0.18

45

1483

Chi–Chi, Taiwan

09/20/99

TCU040

E

22.06

0.13

46

1484

Chi–Chi, Taiwan

09/20/99

TCU042

D

26.31

0.21

47

1492

Chi–Chi, Taiwan

09/20/99

TCU052

D

0.66

0.35

48

1496

Chi–Chi, Taiwan

09/20/99

TCU056

E

10.48

0.14

49

1503

Chi–Chi, Taiwan

09/20/99

TCU065

D

0.57

0.66

50

1504

Chi–Chi, Taiwan

09/20/99

TCU067

D

0.62

0.41

51

1507

Chi–Chi, Taiwan

09/20/99

TCU071

D

5.8

0.62

52

1508

Chi–Chi, Taiwan

09/20/99

TCU072

D

7.08

0.40

53

1509

Chi–Chi, Taiwan

09/20/99

TCU074

D

13.46

0.45

54

1529

Chi–Chi, Taiwan

09/20/99

TCU102

D

1.49

0.24

55

1536

Chi–Chi, Taiwan

09/20/99

TCU110

E

11.58

0.18

56

1537

Chi–Chi, Taiwan

09/20/99

TCU111

E

22.12

0.11

57

1538

Chi–Chi, Taiwan

09/20/99

TCU112

E

27.48

0.08

58

1541

Chi–Chi, Taiwan

09/20/99

TCU116

E

12.38

0.17

59

1542

Chi–Chi, Taiwan

09/20/99

TCU117

E

25.42

0.13

60

1553

Chi–Chi, Taiwan

09/20/99

TCU141

E

24.19

0.09

61

1602

DUZCE, Turkey

11/12/99

BOLU

D

12.04

0.77

62

1605

DUZCE, Turkey

11/12/99

DUZCE

D

6.58

0.43

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behnamfar, F., Alibabaei, H. Classical and non-classical time history and spectrum analysis of soil-structure interaction systems. Bull Earthquake Eng 15, 931–965 (2017). https://doi.org/10.1007/s10518-016-9991-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-016-9991-7

Keywords

Navigation