Skip to main content

Advertisement

Log in

Effect of carbon nanotube modified cathode by electrophoretic deposition method on the performance of sediment microbial fuel cells

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A multi-walled, carbon nanotube (MWNT)-modified graphite felt (GF) cathode was fabricated to improve the performance of sediment microbial fuel cells (SMFC). Three types of MWNT-modified GF cathodes were prepared by different electrophoretic deposition (EPD) times. Maximum power density of SMFC with MWNT-GF*** cathode at 60 min EPD was 215 ± 9.9 mW m−2. This was 1.6 times that of SMFC with a bare GF cathode. Cyclic voltammetry and the amount of biomass showed that biomass density and electrochemical activity increased as the electrophoretic deposition time extended. Therefore the electrode possesses the highest catalytic behavior toward O2 reduction reaction. This simple process of carbon nanotube modification of a cathode by EPD can serve as an effective technique to improve the performance of SMFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Boccaccini AR, Cho J, Roether JA, Thomas BJC, Minay EJ, Shaffer MSP (2006) Electrophoretic deposition of carbon nanotubes. Carbon 44:3149–3160

    Article  CAS  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40:364–369

    Article  CAS  PubMed  Google Scholar 

  • De Schamphelaire L, van den Bossche L, Dang HS, Höfte M, Boon N, Rabaey K, Verstraete W (2008) Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol 42:3053–3058

    Article  PubMed  Google Scholar 

  • De Schamphelaire L, Boeckx P, Verstraete W (2010) Evaluation of biocathodes in freshwater and brackish sediment microbial fuel cells. Appl Microbiol Biotechnol 87:1675–1687

    Article  PubMed  Google Scholar 

  • Donovan C, Dewan A, Heo D, Beyenal H (2008) Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environ Sci Technol 42:8591–8596

    Article  CAS  PubMed  Google Scholar 

  • Donovan C, Dewan A, Heo D, Lewandowski Z, Beyenal H (2013) Sediment microbial fuel cell powering a submersible ultrasonic receiver: new approach to remote monitoring. J Power Sour 233:79–85

    Article  CAS  Google Scholar 

  • Findlay RH, King GM, Watling L (1989) Efficacy of phospholipid analysis in determing microbial biomass in sediments. Appl Environ Microbiol 55:2888–2893

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hong SW, Kim HS, Chung TH (2010) Alteration of sediment organic matter in sediment microbial fuel cells. Environ Pollut 158:185–191

    Article  CAS  PubMed  Google Scholar 

  • Liang P, Wang HY, Xia X, Huang X, Mo YH, Cao XX, Fan M (2011) Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells. Biosen Bioelectr 26:3000–3004

    Article  CAS  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  PubMed  Google Scholar 

  • Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR (2006) Harvesting energy from the marine sediment–water interface II. Kinetic activity of anode materials. Biosens Bioelectron 21:2058–2063

    Article  CAS  PubMed  Google Scholar 

  • Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment–water interface. Environ Sci Technol 35:192–195

    Article  CAS  PubMed  Google Scholar 

  • Reimers CE, Girguis P, Stecher HA III, Tender LM, Ryckelynck N, Whaling P (2006) Microbial fuel cell energy from an ocean cold seep. Geobiology 4:123–136

    Article  CAS  Google Scholar 

  • Rezaei F, Richard TL, Brennan RA, Logan BE (2007) Substrate-enhanced microbial fuel cells for improved remote power generation from sediment based systems. Environ Sci Technol 41:4053–4058

    Article  CAS  PubMed  Google Scholar 

  • Sharma T, Mohana Reddy AL, Chandra TS, Ramaprabhu S (2008) Development of carbon nanotubes and nanofluids based microbial fuel cell. Int J Hydrog Energy 33:6749–6754

    Article  CAS  Google Scholar 

  • Song TS, Jiang HL (2011) Effects of sediment pretreatment on the performance of sediment microbial fuel cells. Bioresour Technol 102:10465–10470

    Article  CAS  PubMed  Google Scholar 

  • Song TS, Yan ZS, Zhao ZW, Jiang HL (2010) Removal of organic matter in freshwater sediment by microbial fuel cells at various external resistances. J Chem Technol Biotechnol 85:1489–1493

    CAS  Google Scholar 

  • Song TS, Wang DB, Han S, Wu XY, Zhou CC (2014) Influence of biomass addition on electricity harvesting from solid phase microbial fuel cells. Int J Hydrog Energy 39:1056–1062

    Article  CAS  Google Scholar 

  • Tender LM, Reimers CE, Stecher HA III, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973) (Grant No. 2011CBA00806, 2012CB721100); the National Science Fund of China (Grant No. 51209116, 21390204); Fund from the State Key Laboratory of Materials-Oriented Chemical Engineering (ZK201312); Program for New Century Excellent Talents at the Ministry of Education of China (Grant No. NCET-11-0987); the Research Fund for the Doctoral Program of Higher Education of China (RFDP) (Grant No. 20113221120007) and the Priority Academic Program from Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian-shun Song or Jingjing Xie.

Additional information

Dawei Zhu and De-Bin Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Wang, DB., Song, Ts. et al. Effect of carbon nanotube modified cathode by electrophoretic deposition method on the performance of sediment microbial fuel cells. Biotechnol Lett 37, 101–107 (2015). https://doi.org/10.1007/s10529-014-1671-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1671-6

Keywords

Navigation