Skip to main content
Log in

Colony social structure in native and invasive populations of the social wasp Vespula pensylvanica

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Social insects rank among the most invasive of terrestrial species. The success of invasive social insects stems, in part, from the flexibility derived from their social behaviors. We used genetic markers to investigate if the social system of the invasive wasp, Vespula pensylvanica, differed in its introduced and native habitats in order to better understand variation in social phenotype in invasive social species. We found that (1) nestmate workers showed lower levels of relatedness in introduced populations than native populations, (2) introduced colonies contained workers produced by multiple queens whereas native colonies contained workers produced by only a single queen, (3) queen mate number did not differ significantly between introduced and native colonies, and (4) workers from introduced colonies were frequently produced by queens that originated from foreign nests. Thus, overall, native and introduced colonies differed substantially in social phenotype because introduced colonies more frequently contained workers produced by multiple, foreign queens. In addition, the similarity in levels of genetic variation in introduced and native habitats, as well as observed variation in colony social phenotype in native populations, suggest that colony structure in invasive populations may be partially associated with social plasticity. Overall, the differences in social structure observed in invasive V. pensylvanica parallel those in other, distantly related invasive social insects, suggesting that insect societies often develop similar social phenotypes upon introduction into new habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akre RD, MacDonald JF (1986) Biology, economic importance and control of yellow jackets. In: Vinson SB (ed) Economic impact and control of social insects. Praeger, NY, pp 353–412

    Google Scholar 

  • Akre RD, Reed HC (1981) A polygynous colony of Vespula pensylvanica (Saussure) (Hymenoptera, Vespidae). Entomol News 92:27–31

    Google Scholar 

  • Akre RD, Greene A, MacDonald JF, Landolt PJ, Davis HG (1980) The yellow jackets of America north of Mexico. Department of Agriculture, USA

    Google Scholar 

  • Archer ME (2010) The queen colony phase of vespine wasps (Hymenoptera, Vespidae). Insect Soc 57:133–145

    Article  Google Scholar 

  • Arnqvist G, Nilsson T (2000) The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav 60:145–164

    Article  PubMed  Google Scholar 

  • Bargum K, Sundstrom L (2007) Multiple breeders, breeder shifts and inclusive fitness returns in an ant. Proc R Soc Lond B 274:1547–1551

    Article  Google Scholar 

  • Beekman M, Oldroyd BP (2008) When workers disunite: intraspecific parasitism by eusocial bees. Annu Rev Entomol 53:19–37

    Article  CAS  PubMed  Google Scholar 

  • Beggs J (2001) The ecological consequences of social wasps (Vespula spp.) invading an ecosystem that has an abundant carbohydrate resource. Biol Cons 99:17–28

    Article  Google Scholar 

  • Beggs JR, Brockerhoff EG, Corley JC, Kenis M, Masciocchi M, Muller F, Rome Q, Villemant C (2011) Ecological effects and management of invasive alien Vespidae. Biocontrol 56:505–526

    Article  Google Scholar 

  • Bekkevold D, Frydenberg J, Boomsma JJ (1999) Multiple mating and facultative polygyny in the Panamanian leafcutter ant Acromyrmex echinatior. Behav Ecol Sociobiol 46:103–109

    Article  Google Scholar 

  • Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Brown MJF, Schmid-Hempel P (2003) The evolution of female multiple mating in social hymenoptera. Evolution 57:2067–2081

    PubMed  Google Scholar 

  • Carew ME, Tay WT, Crozier RH (1997) Polygyny via unrelated queens indicated by mitochondrial DNA variation in the Australian meat ant Iridomyrmex purpureus. Insect Soc 44:7–14

    Article  Google Scholar 

  • Chapman RE, Bourke AFG (2001) The influence of sociality on the conservation biology of social insects. Ecol Lett 4:650–662

    Article  Google Scholar 

  • Chiotis M, Jermiin LS, Crozier RH (2000) A molecular framework for the phylogeny of the ant subfamily Dolichoderinae. Mol Phylogenet Evol 17:108–116

    Article  CAS  PubMed  Google Scholar 

  • Cole BJ (1983) Multiple mating and the evolution of social behavior in the hymenoptera. Behav Ecol Sociobiol 12:191–201

    Article  Google Scholar 

  • Crozier RH, Fjerdingstad EJ (2001) Polyandry in social hymenoptera-disunity in diversity. Annales Zool Fenn 38:267–285

    Google Scholar 

  • Crozier RH, Pamilo P (1996) Evolution of social insect colonies: sex allocation and kin selection. Oxford University Press, Oxford

    Google Scholar 

  • Daly D, Archer ME, Watts PC, Speed MP, Hughes MR, Barker FS, Jones J, Odgaard K, Kemp SJ (2002) Polymorphic microsatellite loci for eusocial wasps (Hymenoptera: Vespidae). Mol Ecol Notes 2:273–275

    CAS  Google Scholar 

  • Edwards RE (1980) Social wasps: their biology and control. Rentokil, East Grinstead

    Google Scholar 

  • Fjerdingstad EJ, Boomsma JJ (1998) Multiple mating increases the sperm stores of Atta colombica leafcutter ant queens. Behav Ecol Sociobiol 42:257–261

    Article  Google Scholar 

  • Foitzik S, Herbers JM (2001) Colony structure of a slavemaking ant. I. Intracolony relatedness, worker reproduction, and polydomy. Evolution 55:307–315

    CAS  PubMed  Google Scholar 

  • Foster KR, Ratnieks FLW (2001) Paternity, reproduction and conflict in vespine wasps: a model system for testing kin selection predictions. Behav Ecol Sociobiol 50:1–8

    Article  Google Scholar 

  • Gadau J, Brady S, Ward PS (1999) Systematics, distribution, and ecology of an endemic California Camponotus quercicola (Hymenoptera: Formicidae). Ann Entomol Soc Am 92:514–522

    Google Scholar 

  • Gambino P (1991) Reproductive plasticity of Vespula pensylvanica (Hymenoptera, Vespidae) on Maui and Hawaii islands, USA. New Zeal J Zool 18:139–149

    Article  Google Scholar 

  • Gambino P, Medeiros AC, Loope LL (1990) Invasion and colonization of upper elevations on East Maui (Hawaii) by Vespula pensylvanica (Hymenoptera, Vespidae). Ann Entomol Soc Am 83:1088–1095

    Google Scholar 

  • Giraud T, Pedersen JS, Keller L (2002) Evolution of supercolonies: the Argentine ants of southern Europe. Proc Natl Acad Sci USA 99:6075–6079

    Article  CAS  PubMed  Google Scholar 

  • Goodisman MAD, Crozier RH (2002) Population and colony genetic structure of the primitive termite Mastotermes darwiniensis. Evolution 56:70–83

    PubMed  Google Scholar 

  • Goodisman MAD, Ross KG (1998) A test of queen recruitment models using nuclear and mitochondrial markers in the fire ant Solenopsis invicta. Evolution 52:1416–1422

    Article  Google Scholar 

  • Goodisman MAD, Matthews RW, Crozier RH (2001a) Hierarchical genetic structure of the introduced wasp Vespula germanica in Australia. Mol Ecol 10:1423–1432

    Article  CAS  PubMed  Google Scholar 

  • Goodisman MAD, Matthews RW, Spradbery JP, Carew ME, Crozier RH (2001b) Reproduction and recruitment in perennial colonies of the introduced wasp Vespula germanica. J Hered 92:346–349

    Article  CAS  PubMed  Google Scholar 

  • Goodisman MAD, Matthews RW, Crozier RH (2002) Mating and reproduction in the wasp Vespula germanica. Behav Ecol Sociobiol 51:497–502

    Article  Google Scholar 

  • Goodisman MAD, Kovacs JL, Hoffman EA (2007) The significance of multiple mating in the social wasp Vespula maculifrons. Evolution 61:2260–2267

    Article  PubMed  Google Scholar 

  • Greene A (1991) Dolichovespula and Vespula. In: Ross KG, Matthews RW (eds) The social biology of wasps. Comstock publishing associates, Ithaca, NY, pp 263–305

    Google Scholar 

  • Hanna C, Foote D, Kremen C (2012) Short- and long-term control of Vespula pensylvanica in Hawaii by fipronil baiting. Pest Manag Sci 68:1026–1033

    Article  CAS  PubMed  Google Scholar 

  • Hanna C, Foote D, Kremen C (2013) Invasive species management restores a plant-pollinator mutualism in Hawaii. J Appl Ecol 50:147–155

    Article  Google Scholar 

  • Hasegawa E, Tinaut A, Ruano F (2002) Molecular phylogeny of two slave-making ants: Rossomyrmex and Polyergus (Hymenoptera: Formicidae). Annales Zool Fenn 39:267–271

    Google Scholar 

  • Helantera H, Strassmann JE, Carrillo J, Queller DC (2009) Unicolonial ants: where do they come from, what are they and where are they going? Trends Ecol Evol 24:341–349

    Article  PubMed  Google Scholar 

  • Herbers JM, Banschbach VS (1999) Plasticity of social organization in a forest ant species. Behav Ecol Sociobiol 45:451–465

    Article  Google Scholar 

  • Hoffman EA, Kovacs JL, Goodisman MAD (2008) Genetic structure and breeding system in a social wasp and its social parasite. BMC Evol Biol 8:239

    Article  PubMed Central  PubMed  Google Scholar 

  • Hölldobler B, Wilson EO (1977) The number of queens: an important trait in ant evolution. Naturwissenschaften 64:8–15

    Article  Google Scholar 

  • Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233

    Article  Google Scholar 

  • Jeanne RL (1980) Evolution of social behavior in the Vespidae. Annu Rev Entomol 25:371–396

    Article  Google Scholar 

  • Jennions MD, Petrie M (2000) Why do females mate multiply? A review of the genetic benefits. Biol Rev 75:21–64

    Article  CAS  PubMed  Google Scholar 

  • Johnson EL, Cunningham TW, Marriner SM, Kovacs JL, Hunt BG, Bhakta DB, Goodisman MAD (2009) Resource allocation in a social wasp: effects of breeding system and life cycle on reproductive decisions. Mol Ecol 18:2908–2920

    Article  PubMed  Google Scholar 

  • Keller L (1993) Queen number and sociality in insects. Oxford University Press, Oxford

    Google Scholar 

  • Keller L (1995) Social life: the paradox of multiple queens. Trends Ecol Evol 10:355–360

    Article  CAS  PubMed  Google Scholar 

  • Kenis M, Auger-Rozenberg MA, Roques A, Timms L, Pere C, Cock M, Settele J, Augustin S, Lopez-Vaamonde C (2009) Ecological effects of invasive alien insects. Biol Inv 11:21–45

    Article  Google Scholar 

  • Leniaud L, Pichon A, Uva P, Bagneres AG (2009) Unicoloniality in Reticulitermes urbis: a novel feature in a potentially invasive termite species. Bull Entomol Res 99:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Invasive species specialist group, New Zealand

    Google Scholar 

  • Moilanen A, Sundström L, Pedersen JS (2004) MATESOFT: a program for deducing parental genotypes and estimating mating system statistics in haplodiploid species. Mol Ecol Notes 4:795–797

    Article  Google Scholar 

  • Moller H (1996) Lessons for invasion theory from social insects. Biol Cons 78:125–142

    Article  Google Scholar 

  • Nielsen R, Tarpy DR, Reeve K (2003) Estimating effective paternity number in social insects and the effective number of alleles in a population. Mol Ecol 12:3157–3164

    Article  PubMed  Google Scholar 

  • Pedersen JS, Krieger MJB, Vogel V, Giraud T, Keller L (2006) Native supercolonies of unrelated individuals in the invasive Argentine ant. Evolution 60:782–791

    PubMed  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Queller DC, Strassmann JE (1998) Kin selection and social insects. Bioscience 48:165–175

    Article  Google Scholar 

  • Ratnieks FLW, Vetter RS, Visscher PK (1996) A polygynous nest of Vespula pensylvanica from California with a discussion of possible factors influencing the evolution of polygyny in Vespula. Insect Soc 43:401–410

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reed HC, Landolt PJ (2005) Late season polygynous Vespula pensylvanica (Hymenoptera : Vespidae) colonies in a northern temperate area. Pan-Pacific Entomol 81:164–170

    Google Scholar 

  • Ross KG, Matthews RW (1982) Two polygynous overwintered Vespula squamosa colonies from the southeastern U.S. (Hymenoptera: Vespidae). Florida Entomol 65:176–184

    Article  Google Scholar 

  • Ross KG, Shoemaker DD (1997) Nuclear and mitochondrial genetic structure in two social forms of the fire ant Solenopsis invicta: insights into transitions to an alternate social organization. Heredity 78:590–602

    Article  Google Scholar 

  • Ross KG, Visscher PK (1983) Reproductive plasticity in yellowjacket wasps: a polygynous, perennial colony of Vespula maculifrons. Psyche 90:179–191

    Article  Google Scholar 

  • Ross KG, Vargo EL, Keller L (1996) Social evolution in a new environment: the case of introduced fire ants. Proc Natl Acad Sci USA 93:3021–3025

    Article  CAS  PubMed  Google Scholar 

  • Rust MK, Su NY (2012) Managing social insects of urban importance. Annu Rev Entomol 57:355–375

    Article  CAS  PubMed  Google Scholar 

  • Schmid-Hempel P (1994) Infection and colony variability in social insects. Philos Trans R Soc Lond 346:313–321

    Article  Google Scholar 

  • Silverman J, Brightwell RJ (2008) The Argentine ant: challenges in managing an invasive unicolonial pest. Annu Rev Entomol 53:231–252

    Article  CAS  PubMed  Google Scholar 

  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    CAS  Google Scholar 

  • Spradbery JP (1973) Wasps: An account of the biology and natural history of solitary and social wasps. Sidgwick and Jackson, London

    Google Scholar 

  • Spradbery JP (1991) Evolution of queen number and queen control. In: Ross KG, Matthews RW (eds) The social biology of wasps. Comstock publishing associates, Ithaca, NY, pp 336–388

    Google Scholar 

  • Strassmann J (2001) The rarity of multiple mating by females in the social Hymenoptera. Insect Soc 48:1–13

    Article  Google Scholar 

  • Strassmann JE, Queller DC (1989) Ecological determinants of social evolution. In: Breed MD, Page RE Jr (eds) The genetics of social evolution. Westview Press, Boulder, CO, pp 81–101

    Google Scholar 

  • Suarez AV, Holway DA, Tsutsui ND (2008) Genetics and behavior of a colonizing species: the invasive argentine ant. Am Nat 172:S72–S84

    Article  PubMed  Google Scholar 

  • Sumner S, Lucas E, Barker J, Isaac N (2007) Radio-tagging technology reveals extreme nest-drifting behavior in a eusocial insect. Curr Biol 17:140–145

    Article  CAS  PubMed  Google Scholar 

  • Tay WT, Cook JM, Rowe DJ, Crozier RH (1997) Migration between nests in the Australian arid-zone ant Rhytidoponera sp. 12 revealed by DGGE analyses of mitochondrial DNA. Mol Ecol 6:403–411

    Article  CAS  Google Scholar 

  • Thoren PA, Paxton RJ, Estoup A (1995) Unusually high frequency of (CT)n and (GT)n microsatellite loci in yellowjacket wasp, Vespula rufa (L.) (Hymenoptera: Vespidae). Insect Mol Biol 4:141–148

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui ND, Suarez AV, Grosberg RK (2003) Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proc Natl Acad Sci USA 100:1078–1083

    Article  CAS  PubMed  Google Scholar 

  • Uddin MM, Tsuchida K (2012) Colony structure and reproductive sharing among queens in a tropical paper wasp, polistes olivaceus. Insect Soc 59:401–410

    Article  Google Scholar 

  • Ulrich Y, Perrin N, Chapuisat M (2009) Flexible social organization and high incidence of drifting in the sweat bee, Halictus scabiosae. Mol Ecol 18:1791–1800

    Article  PubMed  Google Scholar 

  • van der Hammen T, Pederesen JS, Boomsma JJ (2002) Convergent development of low-relatedness supercolonies in Myrmica ants. Heredity 89:83–89

    Article  PubMed  Google Scholar 

  • Vargo EL, Husseneder C (2009) Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. Annu Rev Entomol 54:379–403

    Article  CAS  PubMed  Google Scholar 

  • Vasquez GM, Silverman J (2008) Intraspecific aggression and colony fusion in the Argentine ant. Anim Behav 75:583–593

    Article  Google Scholar 

  • Vetter RS, Visscher PK (1997) Plasticity of annual cycle in Vespula pensylvanica shown by a third year polygynous nest and overwintering of queens inside nests. Insect Soc 44:353–364

    Article  Google Scholar 

  • Visscher PK, Vetter RS (2003) Annual and multi-year nests of the western yellowjacket, Vespula pensylvanica, in California. Insect Soc 50:160–166

    Article  Google Scholar 

  • Wenseleers T, Ratnieks FLW (2006) Comparative analysis of worker reproduction and policing in eusocial hymenoptera supports relatedness theory. Am Nat 168:E163–E179

    Article  PubMed  Google Scholar 

  • Wetterer JK, Schultz TR, Meier R (1998) Phylogeny of fungus-growing ants (Tribe Attini) based on mtDNA sequence and morphology. Mol Phyl Evol 9:42–47

    Article  CAS  Google Scholar 

  • Williams DF (1994) Exotic ants: biology, impact, and control of introduced species. Westview, Boulder

    Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Wilson EE, Holway DA (2010) Multiple mechanisms underlie displacement of solitary Hawaiian Hymenoptera by an invasive social wasp. Ecology 91:3294–3302

    Article  CAS  PubMed  Google Scholar 

  • Wilson EE, Mullen LM, Holway DA (2009) Life history plasticity magnifies the ecological effects of a social wasp invasion. Proc Natl Acad Sci USA 106:12809–12813

    Article  CAS  PubMed  Google Scholar 

  • Zeh JA, Zeh DW (2001) Reproductive mode and the genetic benefits of polyandry. Anim Behav 61:1051–1063

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the U. S. National Science Foundation (Grant # DEB-0640690 (MG) and IOS-0821130 (MG), and graduate research fellowship DGE-1106400 (CH)), the US Geological Survey Invasive Species Program (DF), the Georgia Tech-Elizabeth Smithgall Watts Foundation (MG), and the Department of Education (GAANN fellowship to EC). The authors thank Mike Juhl for providing Vespula colonies from Washington. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. D. Goodisman.

Additional information

Cause Hanna and Erin D. Cook have contributed equally to this work.

Appendix

Appendix

See Tables 3 and 4.

Table 3 Approximate size of amplicons and annealing temperatures (Ta) for microsatellite loci that amplified in V. pensylvanica
Table 4 Approximate size of amplicon and annealing temperature (Ta) for mitochondrial DNA loci that amplified in V. pensylvanica

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanna, C., Cook, E.D., Thompson, A.R. et al. Colony social structure in native and invasive populations of the social wasp Vespula pensylvanica . Biol Invasions 16, 283–294 (2014). https://doi.org/10.1007/s10530-013-0517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0517-9

Keywords

Navigation