Skip to main content
Log in

The Hydrogeology of a Catchment Area and an Artificially Divided Dystrophic Lake – Consequences for the Limnology of Lake Fuchskuhle

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The hydrogeology between the catchment area and the divided dystrophic Lake Fuchskuhle with respect to the genesis and the land–water interactions were investigated. Water levels at numerous locations in the catchment area were measured in order to characterize the hydrology. The water balance of the area was calculated based on long term climatic investigations. The geology of the peat was documented at 25 sampling points by cores collected with a peat drill. Chemical parameters including pH, total phosphorus and total nitrogen concentrations, DOC concentration, colour (SAK 436 m−1) and the UV254/DOC ratio in the catchment area and in two compartments (NE and SW compartment) were determined. The chemical fluxes of DOC, nitrogen and phosphorus from the catchment area into one compartment (SW compartment) were determined. During the genesis of the Lake Fuchskuhle area two aquifer systems (local peat aquifer, regional sandy main aquifer) developed. Both aquifers are largely independently with almost no lateral interactions. Two compartments are supplied with water from the local peat aquifer. From the other two compartments, however, water is flowing out into the peat body. During high groundwater inflow into the SW compartment higher concentration of DOC, nitrogen and phosphorus in the SW compartment were detected. The fen can be divided in two parts: in the meso – to eutrophic fen northwest and the mainly meso – to oligotrophic – acid fen in the southeast. The significant differences in parameters such as pH, conductivity and DOC concentration gave a clear picture of the heterogeneity of the two compartments and their dependence on the catchment area with the two aquifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson H, Bick W, Hepborn A & Stewart M(1989) Nitrogen in humic substances. In: Hayes M, MacCarthy P, Malcolm R & Swift R (Eds) Humic Substances II (pp 223–253). John Wiley & Sons, New York

    Google Scholar 

  • Bittl T (1999) Bakterieller Stoffumsatz und mikrobielles Nahrungsnetz im Pelagial eines Moorsees (Experimentalgewässer Große Fuchskuhle). PhD thesis. Humboldt University, Mathematical – Biological Faculty Berlin

    Google Scholar 

  • Bittl T & Babenzien D (1996) Microbial activity in an artificially divided acidic lake. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 48: 113–121.

    Google Scholar 

  • Chan O, Wolf M, Hepperle D & Casper P (2002) Methanogenic archaeal community in the sediment of an artificially partitioned acidic bog lake. FEMS 42: 119–129

    Google Scholar 

  • David M & Vance G (1991) Chemical character and origin of organic acids in streams and seepage lakes of central Maine. Biogeochemistry 12: 17–41

    Google Scholar 

  • Dickinson C (1983) Micro-organisms in peatland. In: Gore A (Ed) Mires: Swamp, Bog, Fen and Moor. Ecosystems of the World 4A (pp 225–245). Elsevier, Amsterdam

    Google Scholar 

  • Ginzel G (1999) Hydrogeological investigations in the catchment area of Lake Stechlin and Lake Nehmitz. IGB-Report 9 (pp 43–60). ISSN-Nr. 1432-508X, Berlin

  • Ginzel G (2000) Veränderungen des Landschaftswasserhaushaltes und ihre Auswirkungen auf das Naturschutzgebiet Stechlin. In: 2. Stechlin-Forum: Einzugsgebiet – Wal d – Wasser: Ein globales und regionales Beziehungsgeflecht, Rheinsberg–Linowsee 13–15 October 2000 (pp 46–52). Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB), Berlin

    Google Scholar 

  • Ginzel G & Handke H (1995) Hydrogeologische Studie zur Abgrenzung des unterirdischen Einzugsgebietes des Stechlin-und Nehmitzsees, IGB, Berlin

    Google Scholar 

  • Hehmann A & Krienitz L (1996) The succession and vertical distribution of phytoplank-ton of the experimental divided naturally acidic lake 'Große Fuchskuhle' (Brandenburg, Germany). Limnologica 26: 301-309

    Google Scholar 

  • Hehmann A, Krienitz L & Koschel R (2001) Long-term phytoplankton changes in an artificially divided, top-down manipulated humic lake. Hydrobiologia 448: 83–96

    Google Scholar 

  • Hemond H (1990) Wetlands as the source of dissolved organic carbon to surface waters In: Perdue E & Gjessing E (Eds) Organic Acids in Aquatic Ecosystems: Report of the Dahlem Workshop on Organic Acids in Aquatic Ecosystems (pp 301–313). John Wiley & Sons, Chichester

    Google Scholar 

  • Kasprzak P (1993) The use of an artificially divided bog lake in food-web studies. Verh. Internat. Verein. Limnol. 25: 652–656

    Google Scholar 

  • Kasprzak P, Koschel R, Steiner U & Metzdorf K (1988) 'Enclosure' –Experiments in food-web manipulation: first step – dividing the experimental lake. Limnologica 19: 161–165

    Google Scholar 

  • Koerselman W & Verhoeven J (1992) Nutrient dynamics in mires of various trophic status: nutrient inputs and outputs and the internal nutrient cycle. In: Verhoeven J (Ed) Fens and Bogs in the Netherlands: Vegetation, History, Nutrient Dynamics and Conservation (pp 397–432). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Korshin G, Li C & Benjamin M (1998) Principles and applications of differential UV spec-troscopy for monitoring and predicting the formation of disinfection by products. J. Am. Water. Works Assoc. 90: 88–100

    Google Scholar 

  • Korshin G, Benjamin M & Li C (1999a) Use differential spectroscopy to evaluate the structure and reactivity of humic. Water Sci. Technol. 40: 9–16

    Google Scholar 

  • Koschel R (1995) Manipulation of whole-lake ecosystems and long-term limnological ob-servations in the Brandenburg–Mecklenburg Lake District, Germany. Int. Revue Ges. Hydrobiol. 80: 507–518

    Google Scholar 

  • Larcher W (1994) Ökophysiologie der Pflanzen. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Mulholland P & Hill W (1997) Seasonal patterns in streamwater nutrient and dissolved or-ganic carbon concentrations: separating catchment flow path and in-stream effects. Water Resour. Res. 33(6): 1297–1306

    Google Scholar 

  • Mulholland P & Kuenzler E (1979) Organic carbon export from upland and forested wetland watersheds. Limnol. Oceanogr. 24: 960–966

    Google Scholar 

  • Mulholland P, Dahm C, David M, Di Toro D, Fisher T, Hemond H, Kögel-Knabner I, Meybeck M, Meyer J & Sedell J (1990) Group report: what are the temporal and spatial vari-ations of organic acids at the ecosystem level? In: Perdue E & Gjessing E (Eds) Organic. acids in aquatic ecosystems: report of the Dahlem workshop on organic acids in aquatic ecosystems (pp 315–329). John Wiley & Sons, & Chichester

  • Müller-Wegener (1984) Wechselwirkungen von Huminstoffen mit Peptiden. Z. Pflanzenernaehr. Bodenk. 147: 110–124

    Google Scholar 

  • Richter D (1997) Das Langzeitverhalten von Niederschlag und Verdunstung und dessen Auswirkung auf den Wasserhaushalt des Stechlinseegebietes. Berichte des Deutschen Wetterdienstes 291, Offenbach am Main

  • Sachse A, Babenzien D, Ginzel G, Gelbrecht J & Steinberg CEW (2001) Characterization of dissolved organic carbon (DOC) in a dystrophic lake and an adjacent fen. Biogeochemistry 54: 279–296

    Google Scholar 

  • Schulten H & Schnitzer M (1995) Three-dimensional models for humic acids and soil organic matter. Naturwissenschaften 82: 487–498

    Google Scholar 

  • Simek K, Babenzien D, Bittl T, Koschel R, Macek M, Nedoma J & Vrba J (1998) Microbial food webs in an artificially divided acidic bog lake. Internat. Rev. Hydrobiol. 83: 3–18

    Google Scholar 

  • Sontheimer H, Frick B, Fettig J, Hörner G, Hubele C & Zimmer G (1995) Adsorptions-verfahren zur Wasserreinigung. DVGW-Forschungsstelle am Engler-Bunte-Institut der Universität Karlsruhe, Karlsruhe

  • Soulsby C, Chen M, Ferrier R, Helliwell R, Jenkins A & Harriman R (1998) Hydrogeo-chemistry of shallow groundwater in an upland Scottish catchment. Hydrol. Process 12: 1111–1118

    Google Scholar 

  • Soulsby C, Gibbins C, Wade A, Smart R & Helliwell R (2002) Water quality in the uplands: a hydrological perspective on catchment hydrochemistry. Sci. Total Environ. 294: 73–94

    Google Scholar 

  • Succow M (1988) Landschaftsökologische Moorkunde. G. Fischer Verlag, Jena

    Google Scholar 

  • Succow M & Jeschke (1986) Moore in der Landschaft. Urania Verlag Leipzig, Jena, Berlin

    Google Scholar 

  • Succow M & Joosten H (2001) Landschaftsökologische Moorkunde. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart

  • Thurman E (1985) Organic Geochemistry of Natural Waters. Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  • Wetzel R (1975) Limnology. Saunders College Publishing, Philadelphia

    Google Scholar 

  • Wetzel R (1992) Wetlands as metabolic gates. J. Great Lakes Res. 18: 529–532

    Google Scholar 

  • Zwirnmann E & Dietrich P (1999a) Organischer Kohlenstoff. In: Friedrich G & Tümpling W (Eds) Methoden der biologischen Gewässeruntersuchung (pp 398–401). Gustav Fischer Verlag, Jena

    Google Scholar 

  • Zwirnmann E, Krüger A & Gelbrecht J (1999b) Analytik im Zentralen Chemielabor des IGB. In: Berichte des IGB. Heft 9. ISSN-No.: 1432–508X

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Burkert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkert, U., Ginzel, G., Babenzien, H.D. et al. The Hydrogeology of a Catchment Area and an Artificially Divided Dystrophic Lake – Consequences for the Limnology of Lake Fuchskuhle. Biogeochemistry 71, 225–246 (2004). https://doi.org/10.1007/s10533-004-8132-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-004-8132-6

Navigation