Skip to main content
Log in

Microclimate and forest management alter fungal-to-bacterial ratio and N2O-emission during rewetting in the forest floor and mineral soil of mountainous beech forests

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The effects of site exposure (microclimate) and forest management (thinning) on fungal-to-bacterial (F:B) respiratory ratio and N2O emission from forest floor and Ah layer samples were studied at untreated and thinned beech forests. Microclimate effects were studied by selecting sites facing north-east (NE) or south-west (SW). The F:B respiratory ratio was estimated using substrate-induced respiration in combination with inhibitors either affecting fungi or bacteria. N2O production was evaluated after moistening samples initially pre-incubated at different moisture levels to 100% of the water holding capacity (WHC). F:B respiratory ratios were significantly affected by microclimate and thinning, with site exposure having the strongest effect on fungal-to-bacterial ratio and N2O production both for the forest floor and the Ah layer. Significantly more N2O was produced from soils pre-incubated under low (15% WHC) moisture conditions as compared to soils pre-incubated under air dry (5% WHC) or wet conditions (30–60% WHC). A positive correlation between N2O emission and F:B respiratory ratio for Ah layer samples and a negative correlation between bacterial substrate induced respiration (SIR) and N2O emission for both Ah layer and forest floor samples indicated that net N2O production was the result of predominantly fungal N2O production and predominantly bacterial N2O consumption. The latter hypothesis was further supported by increased N2O emission from samples treated with bacterial inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson JPE, Domsch KH (1975) Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soils. Can J Microbiol 21:314–322

    Article  Google Scholar 

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221. doi:10.1016/0038-0717(78)90099-8

    Article  Google Scholar 

  • Bailey VL, Smith JL, Bolton H Jr (2002) Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol Biochem 34:997–1007. doi:10.1016/S0038-0717(02)00033-0

    Article  Google Scholar 

  • Beare MH, Neely CL, Coleman DC, Hargrove WL (1990) A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residues. Soil Biol Biochem 22:585–594. doi:10.1016/0038-0717(90)90002-H

    Article  Google Scholar 

  • Blagodatskaya EV, Anderson TH (1998) Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biol Biochem 30:1269–1274. doi:10.1016/S0038-0717(98)00050-9

    Article  Google Scholar 

  • Bollag JM, Tung G (1972) Nitrous oxide release by soil fungi. Soil Biol Biochem 4:271–276. doi:10.1016/0038-0717(72)90021-1

    Article  Google Scholar 

  • Butterbach-Bahl K, Kock M, Willibald G, Hewett B, Buhagiar S, Papen H, Kiese R (2004) Temporal variations of fluxes of NO, NO2, N2O, CO2 and CH4 in a tropical rain forest ecosystem. Global Biogeochem Cycles 18:GB3012. doi:10.1029/2004GB002243

    Article  Google Scholar 

  • Castaldi S, Smith KA (1998) Effect of cycloheximide on N2O and NO3 production in a forest and an agricultural soil. Biol Fertil Soils 27:27–34. doi:10.1007/s003740050395

    Article  Google Scholar 

  • Cavigelli MA, Robertson GP (2001) Role of denitrifier diversity in rates on nitrous oxide consumption in a terrestrial ecosystem. Soil Biol Biochem 33:297–310. doi:10.1016/S0038-0717(00)00141-3

    Article  Google Scholar 

  • Cheneby D, Hartmann A, Henault C (1998) Diversity of denitrifying microflora and ability to reduce N2O in two soils. Biol Fertil Soils 28:19–26. doi:10.1007/s003740050458

    Article  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    Google Scholar 

  • Dannenmann M, Gasche R, Ledebuhr A, Papen H (2006) Effects of forest management on soil N cycling in beech forests stocking on calcareous soils. Plant Soil 287:279–300. doi:10.1007/s11104-006-9077-4

    Article  Google Scholar 

  • Dannenmann M, Gasche R, Ledebuhr A, Holst T, Mayer H, Papen H (2007a) The effect of forest management on trace gas exchange at the pedosphere-atmosphere interface in beech (Fagus sylvatica L.) forests stocking on calcareous soils. Eur J For Res 126:331–346. doi:10.1007/s10342-006-0153-3

    Google Scholar 

  • Dannenmann M, Gasche R, Papen H (2007b) Nitrogen turnover and N2O production in the forest floor of beech stands as influenced by forest management. J Plant Nutr Soil Sci 170:134–144. doi:10.1002/jpln.200620644

    Article  Google Scholar 

  • Dannenmann M, Butterbach-Bahl K, Gasche R, Willibald G, Papen H (2008) Dinitrogen emissions and the N2:N2O emission ratio of a Rendzic Leptosol as influenced by pH and forest thinning. Soil Biol Biochem 40:2317–2323. doi:10.1016/j.soilbio.2008.05.009

    Article  Google Scholar 

  • Davidson EA (1992) Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Sci Soc Am J 56:95–102

    Google Scholar 

  • Davidson EA, Matson PA, Vitousek PM, Riley R, Dunkin K, Garcia-Mendez G, Maass JM (1993) Processess regulating soil emissions of NO and N2O in a seasonally dry tropical forest. Ecology 74:130–139. doi:10.2307/1939508

    Article  Google Scholar 

  • Dendooven L, Anderson JM (1994) Dynamics of reduction enzymes involved in the denitrification process in pasture soil. Soil Biol Biochem 26:1501–1506. doi:10.1016/0038-0717(94)90091-4

    Article  Google Scholar 

  • Dendooven L, Splatt P, Anderson JM (1994) The use of chloramphenicol in the study of the denitrification process: some side effects. Soil Biol Biochem 26:925–927. doi:10.1016/0038-0717(94)90309-3

    Article  Google Scholar 

  • Dendooven L, Duchateau L, Anderson JM (1996) Gaseous products of the denitrification process as affected by the antecedent water regime of the soil. Soil Biol Biochem 28:239–245. doi:10.1016/0038-0717(95)00132-8

    Article  Google Scholar 

  • Duguay KJ, Klironomos JN (2000) Direct and indirect effects of enhanced UV-B radiation on the decomposing and competitive abilities of saprobic fungi. Appl Soil Ecol 14:157–164. doi:10.1016/S0929-1393(00)00049-4

    Article  Google Scholar 

  • Fenn ME, Poth MA, Jonson DW (1996) Evidence for nitrogen saturation in the San Bernadino Mountains in Southern California. For Ecol Manag 82:211–230

    Article  Google Scholar 

  • Frey SD, Elliott ET, Paustian K (1999) Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol Biochem 31:573–585. doi:10.1016/S0038-0717(98)00161-8

    Article  Google Scholar 

  • Geßler A, Schrempp S, Matzarakis A, Mayer H, Rennenberg H, Adams MA (2001) Radiation modifies the effect of water availability on the carbon isotope composition of beech (Fagus sylvatica L.). New Phytol 50:653–664. doi:10.1046/j.1469-8137.2001.00136.x

    Article  Google Scholar 

  • Hayatsu M, Tago K, Saito M (2008) Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci Plant Nutr 54(1):33–45

    Google Scholar 

  • Hoffmann G (1991) Methodenbuch Band 1, Die Untersuchung von Böden. 4. Auflage, VDLUFA-Verlag, Darmstadt

    Google Scholar 

  • Holst T, Hauser S, Kirchgäßner A, Matzarakis A, Mayer H, Schindler D (2004a) Measuring and modelling plant area index in beech stands. Int J Biometeorol 48:192–201. doi:10.1007/s00484-004-0201-y

    Article  Google Scholar 

  • Holst T, Mayer H, Schindler D (2004b) Microclimate within beech stands—Part II: thermal conditions. Eur J For Res 123:13–28. doi:10.1007/s10342-004-0019-5

    Google Scholar 

  • Holst T, Rost J, Mayer H (2005) Net radiation balance for two forested slopes on opposite sides of a valley. Int J Biometeorol 49:275–284. doi:10.1007/s00484-004-0251-1

    Article  Google Scholar 

  • Ingham ER, Horton KA (1987) Bacterial, fungal and protozoan responses to chlorophorm fumigation in stored soil. Soil Biol Biochem 19:545–550. doi:10.1016/0038-0717(87)90097-6

    Article  Google Scholar 

  • Joergensen RG, Wichern F (2008) Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977–2991. doi:10.1016/j.soilbio.2008.08.017

    Article  Google Scholar 

  • Kobayashi M, Matsuo Y, Takimoto A, Suzuki S, Maruo F, Shoun H (1995) Denitrification, a novel type of respiratory metabolism in fungal mitochondrion. J Biol Chem 271:16263–16267

    Google Scholar 

  • Kudo T, Takaya N, Park SY, Shiro Y, Shoun H (2001) A positively charged cluster formed in the heme-distal pocket of cytochrome P450nor is essential for interaction with NADH. J Biol Chem 276:5020–5026. doi:10.1074/jbc.M007244200

    Article  Google Scholar 

  • Laughlin RJ, Stevens RJ (2002) Evidence for fungal dominance of denitrification and co-denitrification in a grassland soil. Soil Sci Soc Am J 66:1540–1548

    Google Scholar 

  • Lin Q, Brookes PC (1999) Comparison of substrate induced respiration, selective inhibition and biovolume measurements of microbial biomass and its community structure in unamended, ryegrass-amended, fumigated and pesticide-treated soils. Soil Biol Biochem 31:1999–2014. doi:10.1016/S0038-0717(99)00122-4

    Article  Google Scholar 

  • Lloyd D, Boddy L, Davies KJP (1987) Persistence of bacterial denitrification capacity under aerobic conditions: the rule rather than the exception. FEMS Microbiol Ecol 45:185–190. doi:10.1111/j.1574-6968.1987.tb02354.x

    Article  Google Scholar 

  • Mayer H, Holst T, Schindler D (2002) Microclimate within beech stands–part I: photosynthetically active radiation. Forstw Cbl 121:301–321. doi:10.1046/j.1439-0337.2002.02038.x

    Article  Google Scholar 

  • McLain JET, Martens DA (2006) N2O production by heterotrophic N transformations in a semiarid soil. Appl Soil Ecol 32:253–263. doi:10.1016/j.apsoil.2005.06.005

    Article  Google Scholar 

  • Mei L, Yang L, Wang D, Yin B, Hu J, Yin S (2004) Nitrous oxide production and consumption in serially diluted soil suspensions as related to in situ N2O emission in submerged soils. Soil Biol Biochem 36:1057–1066. doi:10.1016/j.soilbio.2004.03.001

    Article  Google Scholar 

  • Moody SA, Newsham KK, Ayres PG, Paul ND (1999) Variation in the responses of litter and phylloplane fungi to UV-B radiation (290–315 nm). Mycol Res 103:1469–1477. doi:10.1017/S0953756299008783

    Article  Google Scholar 

  • Müller C, Martin M, Stevens RJ, Laughlin RJ, Kammann C, Ottow JCG, Jage HJ (2002) Processes leading to N2O emissions in grassland soil during freezing and thawing. Soil Biol Biochem 34:1325–1331. doi:10.1016/S0038-0717(02)00076-7

    Article  Google Scholar 

  • Munch JC (1989) Organism specific denitrification in samples of an Udifluvent with different nitrate concentrations. Z Pflanzenernaehr Bodenkd 152:395–400. doi:10.1002/jpln.19891520410

    Article  Google Scholar 

  • Neely CL, Beare MH, Hargrove WL, Coleman DC (1991) Relationships between fungal and bacterial substrate-induced respiration, biomass and plant residue decomposition. Soil Biol Biochem 23:947–954. doi:10.1016/0038-0717(91)90175-J

    Article  Google Scholar 

  • Papen H, Butterbach-Bahl K (1999) A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany, 1. N2O emissions. J Geophys Res 104:18487–18503. doi:10.1029/1999JD900293

    Article  Google Scholar 

  • Scheu S, Parkinson D (1994) Changes in bacterial and fungal biomass C, bacterial and fungal biovolume and ergosterol content after drying, remoistening and incubation of different layers of cool temperate forest soils. Soil Biol Biochem 26:1515–1525. doi:10.1016/0038-0717(94)90093-0

    Article  Google Scholar 

  • Shoun H, Kim D, Uchiyama H, Sugiyama J (1992) Denitrification by fungi. FEMS Microbiol Lett 94:277–282. doi:10.1111/j.1574-6968.1992.tb05331.x

    Article  Google Scholar 

  • Skiba U, Smith KA, Fowler D (1993) Nitrification and denitrification as sources of nitric oxide in a sandy loam soil. Soil Biol Biochem 25:1527–1536. doi:10.1016/0038-0717(93)90007-X

    Article  Google Scholar 

  • Smith MS, Tiedje JM (1979) Phases of denitrification following oxygen depletion in soil. Soil Biol Biochem 11:261–267. doi:10.1016/0038-0717(79)90071-3

    Article  Google Scholar 

  • Spokas K, Wang D, Venterea R, Sadowsky M (2006) Mechanisms of N2O production following chloropicrin fumigation. Appl Soil Ecol 31:101–109. doi:10.1016/j.apsoil.2005.03.006

    Article  Google Scholar 

  • Stevens RJ, Laughlin RJ, Burns LC, Arah JRM, Hood RC (1997) Measuring the contribution of nitrification and denitrification to the flux of nitrous oxide from soil. Soil Biol Biochem 29:139–151. doi:10.1016/S0038-0717(96)00303-3

    Article  Google Scholar 

  • Uchimura H, Enjoji H, Seki T, Taguchi A, Takaya N, Shoun H (2002) Nitrate reductase-formate dehydrogenase couple involved in the fungal denitrification by Fusarium oxysporum. J Biochem 131:579–586

    Google Scholar 

  • West AW (1986) Improvement of the selective respiratory inhibition technique to measure eukaryote:prokaryote ratios in soils. J Microbiol Methods 5:125–138. doi:10.1016/0167-7012(86)90008-4

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Russian Foundation of Basic Research (Project No 04-06-48527), the NitroEurope project and the German Research Foundation (DFG, contract number PA 442/4-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Blagodatskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blagodatskaya, E., Dannenmann, M., Gasche, R. et al. Microclimate and forest management alter fungal-to-bacterial ratio and N2O-emission during rewetting in the forest floor and mineral soil of mountainous beech forests. Biogeochemistry 97, 55–70 (2010). https://doi.org/10.1007/s10533-009-9310-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-009-9310-3

Keywords

Navigation