Skip to main content
Log in

Mixed-Layer Depth Determination in the Barcelona Coastal Area From Regular Lidar Measurements: Methods, Results and Limitations

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Regular aerosol backscatter measurements using an elastic-backscatter lidar were performed between May 2000 and December 2002 in Barcelona (Spain), within the framework of the European project EARLINET (European Aerosol Research Lidar Network). The mixed-layer depth was one of the major parameters to be retrieved. Three derivative methods have been tested in this complex coastal area using the range-squared-corrected lidar signal: (1) the minimum of its first derivative, (2) the minimum of its second derivative, and (3) the minimum of the first derivative of its logarithm. The second method was found to give statistically the best results when compared to radiosoundings, and was used to process the whole dataset. A number of 162 days and 660 profiles averaged over 30 min have been examined. Between 1000 and 1500 UTC, the mixed-layer depth oscillates between 300 and 1450 m in summer and between 390 and 1420 m in winter. The standard deviation for this portion of the day is 180 and 256 m, respectively, in summer and winter. In summer, low heights (mainly limited to 400–800 m) are associated with large mesoscale compensatory subsidence over the sea and to the thermal internal boundary-layer formation. The strong coastal and orographic influences and the climatological settling of Barcelona determine the complexity of the boundary-layer dynamics and the high heterogeneity of the lidar signals. In many cases, single lidar analyses do not allow an unambiguous determination of the mixed-layer depth. Two diurnal cycle measurements are discussed together with synoptic maps, backtrajectories and radiosoundings in order to outline the complexity of the area and the limitations of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barros N., Toll I., Soriano C., Jiménez P., Borrego C., Baldasano J.M. (2003). ‘Urban Photochemical Pollution in the Iberian Peninsula: the Lisbon and Barcelona Airsheds’. J. Air and Waste Manag. Assoc. 53, 347–359

    Google Scholar 

  • Boers R., Spinhirne J.D., Hart W.D. (1988). ‘Lidar Observations of the Fine-Scale Variability of Marine Stratocumulus Clouds’. J. Appl. Meteorol. 27, 797–810

    Article  Google Scholar 

  • Bösenberg, J., Ansmann, A., Baldasano, J. M., Balis, D., Böckmann, C., Calpini, B., Chaikovsky, A., Flamant, P., Hagard, A., Mitev, V., Papayannis, A., Pelon, J., Resendes, D., Schneider, J., Spinelli, N., Trickl, T., Vaughan, G., Visconti, G., and Wiegner, M. (2001). ‘EARLINET: A European aerosol research lidar network’, in A. Dabas, C. Loth and J. Pelon (eds.), Advances in Laser Remote Sensing – Selected papers presented at the 20th ILRC, Vichy (France), July 10–14, 2000, Ecole Polytechnique, Palaiseau, France, pp. 155–158

  • Bösenberg, J. and Matthias, V. (2003). ‘EARLINET: A European Aerosol Research Lidar Network to Establish an Aerosol Climatology’, in Final Report for the Period February 2000 to February 2003, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 212 pp

  • Brooks I.M. (2003). ‘Finding Boundary Layer Top: Application of a Wavelet Covariance Transform to Lidar Backscatter Profiles’. J. Atmos. Oceanic Technol. 20, 1092–1105

    Article  Google Scholar 

  • Cohn S.A., Angevine W.M. (2000). ‘Boundary-Layer Height and Entrainement Zone Thickness Measured by Lidars and Wind Profiling Radars’. J. Appl. Meteorol. 29, 1233–1247

    Article  Google Scholar 

  • Deardorff J.W., Willis G.E., Stockton B.H. (1980). ‘Laboratory Studies of the Entrainment Zone of a Convectively Mixed Layer’. J. Fluid. Mech. 100, 41–64

    Article  Google Scholar 

  • Draxler R.R., Hess G.D. (1998). ‘An Overview of the Hysplit4 Modelling System for Trajectories, Dispersion, and Deposition’. Austr. Meteorol. Mag. 47, 295–308

    Google Scholar 

  • Draxler, R. R., and Rolph, G. D. (2003). HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html), NOAA Air Resources Laboratory, Silver Spring, MD

  • Dudhia J. (1993). ‘A Non-Hydrostatic Version of the Penn State-NCAR Mesoscale Model: Validation Tests and Simulation of An Atlantic Cyclone and Cold Front’. Mon. Wea. Rev. 121, 1493–1513

    Article  Google Scholar 

  • Dudhia, J., Gill, D., Guo, Y., Manning, K., and Wang W. (2001). PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and User’s Guide: MM5 Modeling System Version 3, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, CO (June 18, 2001), http://www.mmm.ucar.edu/mm5/

  • Dupont, E. (1991). Etude méthédologique et expérimentale de la couche limite atmosphérique par télédétection laser, Ph.D. dissertation., Université Pierre et Marie Curie, Paris, France, 220 pp

  • Flamant C., Pelon J., Flamant P.H., Durand P. (1997). ‘Lidar determination of the entrainement zone thickness at the top of the unstable marin atmospheric boundary-layer’. Boundary-Layer Meteorol. 83, 247–284

    Article  Google Scholar 

  • Gayno, G. A., Seaman, N. L., Lario, A. M., and Stauffer, D. R. (1994). ‘Forecasting Visibility Using a 1.5-order Closure Boundary Layer Scheme in a 12-km Nonhydrostatic Model’, in: AMS Tenth Conference on Numerical Weather Prediction, American Meteorological Society, 45 Beacon St., Boston, MA, pp. 18–20

  • Hägeli P., Steyn D.G., Strawbridge K.B. (2000). ‘Spatial and Temporal Variability of Mixed-layer Depth and Entrainment Zone Thickness’. Boundary-Layer Meteorol. 97, 47–71

    Article  Google Scholar 

  • Hayden K.L., Anlauf K.G., Hoff R.M., Strapp J.W., Bottenheim J.W., Wiebe H.A., Froude F.A., Martin J.B., Steyn D.G., McKendry I.G. (1997). ‘The Vertical Chemical and Meteorological Structure of the Boundary Layer in the Lower Fraser Valley during Pacific ’93’. J. Atmos. Environ. 31, 2089–2105

    Article  Google Scholar 

  • Holzworth C.G. (1967). ‘Mixing Depths, Wind Speeds and Air Pollution Potential for Selected Locations in the United States’. J. Appl. Meteorol. 6, 1039–1044

    Article  Google Scholar 

  • Hooper W.P., Eloranta E.W. (1986). ‘Lidar Measurements of Wind in the Planetary Boundary Layer: The Method, Accuracy and Results from Joint Measurements with Radiosonde and Kytoon’. J. Climate Appl. Meteorol. 25, 990–1001

    Article  Google Scholar 

  • Jorba O., Pérez C., Rocadenbosch F., Baldasano J.M. (2004). ‘Cluster Analysis of 4-day Backtrajectories Arriving in the Barcelona Area (Spain) From 1997 to 2002’. J. Appl Meteorol. 43, 887–901

    Article  Google Scholar 

  • Kain, J. S., and Fritsch, J. M. (1993). ‘Convective Parameterisation for Mesoscale Models: The Kain-Fritsch Scheme,’ in K. A. Emanuel and D. J. Raymond (eds.), The Representation of Cumulus Convection in Numerical Models, American Meteorological Society, 45 Beacon St., Boston, pp. 246

  • Martín-Vide, J. (1987). Característiques climatològiques de la precipitació en la franja costera mediterrània de la Península Ibèrica, PhD Dissertation, Institut Cartogràfic de Catalunya, Barcelona, Spain, 245 pp

  • Matthias V., Bösenberg J. (2002). ‘Aerosol climatology for the planetary boundary layer derived from regular lidar measurements’. Atmos. Res. 63, 221–245

    Article  Google Scholar 

  • Matthias, V., Balis, D., Bösenberg, J., Eixmann, R., Iarlori, M., Komguem, L., Mattis, I., Papayannis, A., Pappalardo, G., Perrone, M. R., and Wang, X. (2004). ‘Vertical aerosol distribution over Europe: Statistical analysis of Raman lidar data from 10 European Aerosol Research Lidar Network (EARLINET) stations’, J. Geophys. Res. 109, D18201, doi:10.1029/2004JD004638

  • Melfi S.H., Spinhirne J.D., Chou S.H., Palm S.P. (1985). ‘Lidar Observation of the Vertically Organized Convection in the Planetary Boundary Layer Over the Ocean’. J. Clim. Appl Meteorol. 24, 806–821

    Article  Google Scholar 

  • Menut L., Flamant C., Pelon J., Flamant P.H. (1999). ‘Urban Boundary-Layer Height Determination from Lidar Measurements Over the Paris area’. Appl. Opt. 38, 945–954

    Article  Google Scholar 

  • Millán, M. M., Artinñano, B., Alonso, L., Castro, M., Fernandez-Patier, R., and Goberna, J. (1992). ‘Mesometeorological Cycles of Air Pollution in the Iberian Peninsula’, Air Pollution Research Report 44, Commission of the European Communities, Brussels, Belgium, 219 pp

  • Millán M., Salvador R., Mantilla E. (1997). ‘Photooxidant Dynamics in the Mediterranean Basin in Summer: Results From European Research Projects’. J. Geophys. Res 102, 8811–8823

    Article  Google Scholar 

  • Pérez, C., Jiménez, P., Rocadenbosch, F., and Baldasano, J. M., (2003). ‘Lidar Observations of Saharan Dust and Regional Pollution Events Over the Northeastern Iberian Peninsula in the Frame of EARLINET’, in American Association for Aerosol Research 2003 – Abstract of the 22nd Annual Conference, Anaheim, California, October 20–24, 2003, pp. 89

  • Pérez, C., Sicard M., Jorba O., Comerón A., Baldasano J.M. (2004). ‘Summertime Re-Circulations of Air Pollutants Over the North-Eastern Iberian Coast Observed From Systematic EARLINET Lidar Measurements in Barcelona’. Atmos Environ. 38, 3983–4000

    Article  Google Scholar 

  • Rocadenbosch, F., Sicard, M., Comerón, A., Baldasano, J. M., Rodríguez, A., Agishev, R., Muñoz, C., López, M. A and García-Vizcaino, D. (2002). ‘The UPC Scanning Raman Lidar: An Engineering Overview’, in L. Bissonnette, G. Roy, and G Vallée (eds.), Lidar Remote Sensing in Atmospheric and Earth Sciences – Reviewed and revised papers presented at the 21st ILRC, Québec (Canada), July 8–12, 2002, Defence R & D Canada – Valcartier, Val-Bélair, Canada, pp. 69–70

  • Rodríguez S., Querol X., Alastuey A., Kallos G., Kakaliagou O. (2001). ‘Saharan Dust Contribution to PM10 and TSP Levels in Southern and Eastern Spain’. Atmos. Environ. 35, 2433–2447

    Article  Google Scholar 

  • Rolph, G. D. (2003). Real-time Environmental Applications and Display sYstem (READY) Website (http://www.arl.noaa.gov/ready/hysplit4.html), NOAA Air Resources Laboratory, Silver Spring, MD

  • Seibert, P., Beyrich, F., Gryning, S. E., Joffre, S., Rasmussen, A., and Tercier, P. (1998). ‘Mixing layer depth determination for dispersion modelling’, COST Action 710 – Final Report Harmonisation of the pre-processing of meteorological data for atmospheric dispersion models, Report of Working Group 2, Office for Official Publications of the European Communities, Luxembourg, 431 pp

  • Seibert P., Beyrich F., Gryning S.E., Joffre S., Ramussen A., Tercier P. (2000). ‘Review and Intercomparison of Operational Methods for the Determination of hte Mixing Height’. Atmos. Environ. 34, 1001–1027

    Article  Google Scholar 

  • Senff C., Bösenberg J., Peters G., Schaberl T. (1996). ‘Remote Sesing of Turbulent Ozone Fluxes and the Ozone Budget in the Convective Boundary Layer with DIAL and Radar-RASS: A Case Study’. Contrib. Atmos. Phys. 69, 161–176

    Google Scholar 

  • Sicard, M., Pérez, C., Comerón, A., Baldasano, J. M., and Rocadenbosch, F. (2003). ‘Determination of the Mixing Layer Height from Regular Lidar Measurements in the Barcelona Area’, in K. P Schäfer, A. Comerón, M. R. Carleeer, and R. H. Picard, (eds.), Proc. SPIE 5235-66, ISSN 0277-786X, ISBN 0-8194-5118-5, Barcelona, Spain, September 8–12, 2003, SPIE, PO Box 10, Bellingham, WA, pp. 505–516

  • Soriano C., Baldasano J.M., Buttler W.T., Moore K. (2001). ‘Circulatory Patterns of Air Pollutants Within the Barcelona Air Basin in a Summertime Situation: Lidar and Numerical Approaches’. Boundary-Layer Meteorol. 98, 33–55

    Article  Google Scholar 

  • Steyn D.G., Baldi M., Hoff R. (1999). ‘The Detection of Mixed Layer Depth From Lidar Backscatter Profiles’. J. Atmos Oceanic Tech. 16, 953–959

    Article  Google Scholar 

  • Stull R.B. (1988). An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, The Netherlands, 670 pp

    Google Scholar 

  • Vogelezang D.H.P., Holtslag A.A.M. (1996). ‘Evaluation and Model Impacts of Alternative Boundary-Layer Height Formulations’. Boundary-Layer Meteorol. 81, 245–269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sicard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sicard, M., Pérez, C., Rocadenbosch, F. et al. Mixed-Layer Depth Determination in the Barcelona Coastal Area From Regular Lidar Measurements: Methods, Results and Limitations. Boundary-Layer Meteorol 119, 135–157 (2006). https://doi.org/10.1007/s10546-005-9005-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-9005-9

Keywords

Navigation