Skip to main content
Log in

Cobalt and Copper Composite Oxides as Efficient Catalysts for Preferential Oxidation of CO in H2-Rich Stream

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of Co–Cu composite oxides with different Co/Cu atomic ratios were prepared by a co-precipitation method. XRD, N2 sorption, TEM, XPS, H2-TPR, CO-TPR, CO-TPD and O2-TPD were used to characterize the structure and redox properties of the composite oxides. Only spinel structure of Co3O4 phase was confirmed for the Co–Cu composite oxides with Co/Cu ratios of 4/1 and 2/1, but the particle sizes of these composite oxides decreased evidently compared with Co3O4. These composite oxides could be reduced at lower temperatures than Co3O4 by either H2 or CO. CO and O2 adsorption amounts over the composite oxides were significantly higher than those over Co3O4. These results indicated a strong interaction between cobalt and copper species in the composite samples, possibly suggesting the formation of Cu x Co3−x O4 solid solution. For the preferential oxidation of CO in a H2-rich stream, the Co–Cu composite oxides (Co/Cu = 4/1–1/1) showed distinctly higher catalytic activities than both Co3O4 and CuO, and the formation of Cu x Co3−x O4 solid solution was proposed to contribute to the high catalytic activity of the composite catalysts. The Co–Cu composite oxide was found to exhibit higher catalytic activity than several other Co3O4-based binary oxides including Co–Ce, Co–Ni, Co–Fe and Co–Zn oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A (2001) Nature 414:345

    Article  CAS  Google Scholar 

  2. Ratnasamy P, Srinivas D, Satyanarayana CVV, Manikandam P, Kumaran R, Senthil S, Sachin M, Shetti VN (2004) J Catal 221:455

    Article  CAS  Google Scholar 

  3. Choudhary TV, Goodman DW (2002) Catal Today 77:65

    Article  CAS  Google Scholar 

  4. Sanchez RMT, Ueda A, Tanaka K, Haruta M (1997) J Catal 168:125

    Article  CAS  Google Scholar 

  5. Kahlich MJ, Gasteiger HA, Behm RJ (1997) J Catal 171:93

    Article  CAS  Google Scholar 

  6. Son IH, Shamsuzzoha M (2002) J Catal 210:460

    Article  CAS  Google Scholar 

  7. Pozdnyakova O, Tesehner D, Wootseh A, Kröhnert J, Steinhauer B, Sauer H, Toth L, Jentoft FC, KnoP-Gericke A, Paäl Z, Schlögl R (2006) J Catal 237:17

    Article  CAS  Google Scholar 

  8. Tanaka K, Shou M, He H, Shi X (2006) Catal Lett 110:185

    Article  CAS  Google Scholar 

  9. Iwasa N, Arai S, Arai M (2008) Appl Catal B 79:132

    Article  CAS  Google Scholar 

  10. Teng Y, Sakurai H, Ueda A, Kobayashi T (1999) Int J Hydrogen Energy 24:355

    Article  CAS  Google Scholar 

  11. Huang Y, Wang A, Li L, Wang X, Su D, Zhang T (2008) J Catal 255:144

    Article  CAS  Google Scholar 

  12. Yung MM, Zhao ZK, Woods MP, Ozkan US (2008) J Mol Catal A 279:1

    Article  CAS  Google Scholar 

  13. GuO Q, Liu Y (2007) React Kinet Catal Lett 92:19

    Article  CAS  Google Scholar 

  14. GuO Q, Liu Y (2008) Appl Catal B 82:19

    Article  CAS  Google Scholar 

  15. Moreno M, Baronetti GT, Laborde MA, Mariño FJ (2008) Int J Hydrogen Energy. doi:10.1016/j.ijhydene.2008.03.043

  16. Luo MF, Ma JM, Lu JQ, Song YP, Wang YJ (2007) J Catal 246:52

    Article  CAS  Google Scholar 

  17. Moretti E, Storaro L, Talon A, Patrono P, Pinzari F, Montanari T, Ramis G, Lenarda M (2008) Appl Catal A 344:165

    Article  CAS  Google Scholar 

  18. Wang YZ, Zhao YX, Gao CG, Liu DS (2007) Catal Lett 116:136

    Article  CAS  Google Scholar 

  19. Pollard MJ, Weinstock BA, Bitterwolf TE, Griffiths PR, Newbery AP, Paine III JB (2008) J Catal 254:218

    Article  CAS  Google Scholar 

  20. Wang CB, Tang CW, Gau SJ, Chien SH (2005) Catal Lett 101:59

    Article  CAS  Google Scholar 

  21. Mocuta C, Barbier A, Renaud G (2000) Appl Surf Sci 56:162

    Google Scholar 

  22. Mathew T, Shiju NR, Sreekumar K, Rao BS, Gopinath CS (2002) J Catal 210:405

    Article  CAS  Google Scholar 

  23. Sreekumar K, Mathew T, Devassy BM, Rajagopal R, Vetrivel R, Rao BS (2001) Appl Catal 205:11

    Article  CAS  Google Scholar 

  24. Sreekumar K, Mathew T, Rajagopal R, Vetrivel R, Rao BS (2000) Catal Lett 65:99

    Article  CAS  Google Scholar 

  25. Said AA, Ai-Qasmi R (1996) Thermochim Acta 275:83

    Article  CAS  Google Scholar 

  26. Zavyalova U, Nigrovski B, Pollok K, Langenhorst F, Müler B, Scholz P, Ondruschka B (2008) Appl Catal B 83:221

    Article  CAS  Google Scholar 

  27. Porta P, Dragone R, Fierro G, Inversi M, Lo Jacono M, Moretti G (1991) J Mater Chem 1:311

    Google Scholar 

  28. Brunauer B, Emmett PH, Teller PHE (1938) J Am Chem Soc 60:309

    Article  CAS  Google Scholar 

  29. Barrett EP, Joyner LS, Haienda PP (1951) J Am Chem Soc 73:373

    Article  CAS  Google Scholar 

  30. Zarate RA, Hevia F, Fuentes S, Fuenzalida VM, Zúñiga A (2007) J Solid State Chem 180:1464

    Article  CAS  Google Scholar 

  31. Cesar DV, Peréz CA, Schmal M, Salim VMM (2000) Appl Surf Sci 157:159

    Article  CAS  Google Scholar 

  32. Dupin J-C, Gonbeau D, Vinatier P, Levasseur A (2000) Phys Chem Chem Phys 1319

  33. Fierro G, Jacono ML, Inversi M, Dragone R, Porta P (2000) Top Catal 10:39

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20773099), the National Basic Research Program of China (2005CB221408), the Key Scientific Project of Fujian Province of China (No. 2005HZ01-3), and the Program for New Century Excellent Talents in Fujian province (to Q. Zhang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Liu, X., Zhang, Q. et al. Cobalt and Copper Composite Oxides as Efficient Catalysts for Preferential Oxidation of CO in H2-Rich Stream. Catal Lett 127, 377–385 (2009). https://doi.org/10.1007/s10562-008-9693-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9693-0

Keywords

Navigation