Skip to main content
Log in

Textural Properties and Catalytic Applications of ZSM-5 Monolith Foam for Methanol Conversion

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

ZSM-5 monolith foam (ZMF) samples with various framework Si/Al ratios have been successfully synthesized by polyurethane foam (PUF) template method and evaluated for their catalytic performance towards methanol to propylene (MTP) reaction. The samples were tested for their textural properties using SEM, XRD, BET surface area, pore volume and NH3-TPD techniques revealing the formation of ZMF exhibiting about 100–300 μm range macro pores created by packed assembly of 5 μm size orthorhombic shaped ZSM-5 crystals. The ZMF samples exhibited effective activity in methanol to olefin conversion, with superior product selectivities at optimum Si/Al ratio of 250. Further, the ZMF catalyst with high macro porosity exhibited superior catalytic activity compared to its pelletized form, especially at higher feed flow rates, that signifies the importance of macro porous structure of ZMF in facilitating the enhanced mass transport for the labile diffusion of light olefins. Reaction temperature also played a vital role in determining product selectivity. At 500 °C, the catalysts exhibited the highest light olefin (C2 =–C4 =) selectivity and above this temperature, formation of C5 + is prevailed at the cost of C2 =–C4 = revealing the accelerated occurrence of oligomerization reactions at these conditions. At optimized catalytic properties and reaction conditions, the catalyst exhibited as high as 75% selectivity to C2–C4 olefins, with propylene as major component (~44%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brogen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U (2007) J Catal 249:195

    Article  Google Scholar 

  2. Keil FJ (1999) Micropor Mesopor Mater 339:36

    Google Scholar 

  3. Chen JQ, Bozzano A, Glover B, Fuglerud T, Kvisle S (2005) Catal Today 106:103

    Article  CAS  Google Scholar 

  4. Stocker M (1999) Micropor Mesopor Mater 29:3

    Article  CAS  Google Scholar 

  5. Zhu Q, Hinode M, Yokoi T, Kondo JN, Kubota Y, Tatsumi T (2008) Micropor Mesopor Mater 116:253

    Article  CAS  Google Scholar 

  6. Cui Z-M, Liu Q, Ma Z, Bian S-W, Song W-G (2008) J Catal 258:83

    Article  CAS  Google Scholar 

  7. Patcas FC (2005) J Catal 231:194

    Article  CAS  Google Scholar 

  8. Shan Z, van Kooten WEJ, Oudshoorn OL, Jansen JC, van Bekkum H, van den Bleek CM, Calis HPA (2000) Micropor Mesopor Mater 34:81

    Article  CAS  Google Scholar 

  9. Davis SP, Borgstedt EVR, Suib SL (1990) Chem Mater 2:712

    Article  CAS  Google Scholar 

  10. Boudreau LC, Kuck JA, Tsapatsis M, Membr J (1999) Science 152:41

    CAS  Google Scholar 

  11. Hedlund J, Noack M, Kölsch P, Creaser D, Caro J, Sterte J (1999) J Membr Sci 159:263

    Article  CAS  Google Scholar 

  12. Bein T (1996) Chem Mater 8:1636

    Article  CAS  Google Scholar 

  13. Caro J, Noack M, Kölsch P, Schäfer R (2000) Micropor Mesopor Mater 38:3

    Article  CAS  Google Scholar 

  14. Kormarneni S, Katsuki H, Furuta SJ (1998) Mater Chem 8:2327

    Article  Google Scholar 

  15. Zampieri A, Colombo P, Mabande GTP, Selvam T, Schwieger W (2004) Adv Mater 16:819

    Article  CAS  Google Scholar 

  16. Wine G, Tessonnier J-P, Rigolet S, Marichal C, Ledoux M-J, Huu C-P (2006) J Mol Catal A 248:113

    Article  CAS  Google Scholar 

  17. Seijger GBF, Oudshoorn OL, van Kooten WEJ, Jansen JC, van Bekkum H, van den Bllek CM, Calis HPA (2000) Micropor Mesopor Mater 39:195

    Article  CAS  Google Scholar 

  18. Anderson MW, Holmes SM, Hanif N, Cundy CS (2000) Angew Chem Int Ed 39:2707

    Article  CAS  Google Scholar 

  19. Zhang B, Davis SA, Mendelson NH, Mann S (2000) Chem Commun 781

  20. Holland BT, Abrams L, Stein A (1999) J Am Chem Soc 121:4308

    Article  CAS  Google Scholar 

  21. Tosheva L, Valtchev V, Sterte J (2000) Micropor Mesopor Mater 35–36:621

    Article  Google Scholar 

  22. Valtchev V, Schoeman BJ, Hedlund J, Mintova S, Sterte J (1996) Zeolites 17:408

    Article  CAS  Google Scholar 

  23. Ha K, Lee Y-J, Jung D-Y, Lee JH, Yoon KB (2000) Adv Mater 12:1614

    Article  CAS  Google Scholar 

  24. Huang L, Wang Z, Sun J, Miao L, Li Q, Yan Y, Zhao D (2000) J Am Chem Soc 122:3530

    Article  CAS  Google Scholar 

  25. Lee YJ, Lee JS, Park YS, Yoon KB (2001) Adv Mater 13:1259

    Article  CAS  Google Scholar 

  26. Lee YJ, Yoon KB (2006) Micropor Mesopor Mater 88:176

    Article  CAS  Google Scholar 

  27. Kim WJ, Kim TJ, Ahn WS, Lee YJ, Yoon KB (2003) Catal Lett 91:123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding from the Korea Ministry of Knowledge Economy (MKE) through ‘‘Project of next-generation novel technology development’’ of ITEP. Dr. N. Viswanadham is thankful to Korea Federation of Science & Technology (KOSEF) for giving Brain-Pool fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Jo Lee or Ki-Won Jun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YJ., Kim, YW., Jun, KW. et al. Textural Properties and Catalytic Applications of ZSM-5 Monolith Foam for Methanol Conversion. Catal Lett 129, 408–415 (2009). https://doi.org/10.1007/s10562-008-9811-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9811-z

Keywords

Navigation