Skip to main content
Log in

Investigating the Effect of NO Versus NO2 on the Performance of a Model NO X Storage/Reduction Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effects of using NO or NO2 as the NO X source on the performance of a NO X storage/reduction catalyst were investigated from 200 to 500 °C. The evaluation included comparison with constant cycling times and trapping the same amount of NO X during the lean phase. With NO2 as the NO X source, better trapping and reduction performance was attained in comparison to NO, at all operating temperatures except 300 °C. This exception, under the conditions tested, was likely due to high NO oxidation activity and rapid trapping of NO2, although it is expected that extending the trapping time would lead to consistent differences. Several reasons for the observed improvements at 200, 400 and 500 °C with NO2 relative to NO are discussed. One that can explain the data, for both trapping and release improvement, is treating the monolith as an integral reactor. With NO2, more NO X is trapped at the very inlet of the catalyst, whereas with NO, the maximum in trapping during cycling occurs slightly downstream. Thus more of the catalyst can be used for trapping with NO2 as the NO X source. The decreased release during catalyst regeneration is similarly explained; with more being released at the very inlet, there is more residence time and therefore contact with downstream Pt sites, but more importantly more interaction between reductant and stored NO X . NH3 and N2O measurements support this conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bogner W, Kramer M, Krutzsch B, Pischinger S, Voigtlander D, Wenninger G, Wirbeleit F, Brogan M, Brisley R, Webster D (1995) Appl Catal B: Environ 7:153

    Article  Google Scholar 

  2. Takahashi N, Shinjoh H, Iijima T, Suzuki T, Yamazaki K, Yokota K, Suzuki H, Miyoshi N, Matsumoto S, Tanizawa T, Tanaka T, Tateishi S, Kasahara K (1996) Catal Today 27:63

    Article  CAS  Google Scholar 

  3. Hachisuka I, Hirata H, Ikeda Y, Matsumoto S (1999) SAE Technical Paper Series 1999-08-0571

  4. Epling WS, Campbell LE, Yezerets A, Currier NW, Parks JE (2004) Catal Rev 46:163

    Article  Google Scholar 

  5. Westerberg B, Fridell E (2001) J Mol Catal A: Chem 165:249

    Article  CAS  Google Scholar 

  6. Kwak J, Kim D, Szailer T, Peden C, Szanyi J (2006) Catal Lett 111:3

    Article  Google Scholar 

  7. Prinetto F, Ghiotti G, Nova I, Lietti L, Tronconi E, Forzatti P (2001) J Phys Chem B 105:12732

    Article  CAS  Google Scholar 

  8. Toops T, Smith D, Epling WS, Parks J, Partridge W (2005) Appl Catal B: Environ 58:255

    Article  CAS  Google Scholar 

  9. Jozsa P, Jobson E, Larsson M (2004) Top Catal 30/31:177

    Article  CAS  Google Scholar 

  10. James D, Fourré E, Ishii M, Bowker M (2003) Appl Catal B: Environ 45:147

    Article  CAS  Google Scholar 

  11. Poulston S, Rajaram RR (2003) Catal Today 81:603

    Article  CAS  Google Scholar 

  12. Fridell E, Persson H, Westerberg B, Olsson L, Skoglundh M (2000) Catal Lett 66:71

    Article  CAS  Google Scholar 

  13. Mahzoul H, Brilhac JF, Gilot P (1999) Appl Catal B: Environ 20:47

    Article  CAS  Google Scholar 

  14. Nova I, Lietti L, Forzatti P (2008) Catal Today 136:128

    Article  CAS  Google Scholar 

  15. Schmitz P, Baird R (2002) J Phys Chem B 106:4176

    Article  Google Scholar 

  16. Hodjati S, Vaezzadeh K, Petit C, Pitchon V, Kiennemann A (2000) Catal Today 59:323

    Article  CAS  Google Scholar 

  17. Erkfeldt S, Jobson E, Larsson M (2001) Top Catal 16/17:1

    Article  Google Scholar 

  18. Fridell E, Skoglundh M, Westerberg B, Johansson S, Smedler G (1999) J Catal 183:196

    Article  CAS  Google Scholar 

  19. Olsson L, Fridell E (2002) J Catal 210:340

    Article  CAS  Google Scholar 

  20. Crocoll M, Kureti S, Weisweiler W (2005) J Catal 229:480

    Article  CAS  Google Scholar 

  21. Mulla SS, Chen N, Cumaranatunge L, Delgass WN, Epling WS, Ribeiro FH (2006) Catal Today 114:57

    Article  CAS  Google Scholar 

  22. Mulla SS, Chen N, Delgass WN, Epling WS, Ribeiro FH (2005) Catal Lett 100:3

    Article  Google Scholar 

  23. Kabin K, Muncrief R, Harold M (2004) Catal Today 96:79

    Article  CAS  Google Scholar 

  24. Rodrigues F, Juste L, Potvin C, Tempère JF, Blanchard G, Djéga-Mariadassou G (2001) Catal Lett 7:1

    Google Scholar 

  25. Meng L, Lin M, Fu Y, Hu T, Xie Y, Zhang J (2003) Top Catal 22:111

    Article  Google Scholar 

  26. Lietti L, Forzatti P, Nova I, Tronconi E (2001) J Catal 204:175

    Article  CAS  Google Scholar 

  27. Cant NW, Patterson MJ (2002) Catal Today 73:271

    Article  CAS  Google Scholar 

  28. Epling WS, Parks JE, Campbell GC, Yezerets A, Currier NW, Campbell L (2004) Catal Today 96:21

    Article  CAS  Google Scholar 

  29. Piacentini M, Maciejewski M, Baiker A (2005) Appl Catal B: Environ 60:265–275

    Article  CAS  Google Scholar 

  30. Medhekar V, Balakotaiah V, Harold M (2007) Catal Today 121:226

    Article  CAS  Google Scholar 

  31. Salasc S, Skoglundh M, Fridell E (2002) Appl Catal B: Environ 36:145

    Article  CAS  Google Scholar 

  32. Kobayashi T, Yamada T, Kayano K, SAE Technical Paper Series 970745

  33. Kikuyama S, Matsukuma I, Kikuchi R, Sasaki K, Eguchi K (2002) Appl Catal A: Gen 226:23

    Article  CAS  Google Scholar 

  34. Laurent F, Pope C, Mahzoul H, Delfosse L, Gilot P (2003) Chem Eng Sci 58:1793

    Article  CAS  Google Scholar 

  35. Aftab K, Mandur J, Budman H, Currier NW, Yezerets A, Epling WS (2008) Catal Lett 125:229

    Article  CAS  Google Scholar 

  36. Olsson L, Westerberg B, Persson H, Fridell E, Skoglundh M, Andersson B (1999) J Phys Chem B 103:10433

    Article  CAS  Google Scholar 

  37. Epling WS, Yezerets A, Currier NW (2006) Catal Lett 110:143

    Article  CAS  Google Scholar 

  38. Choi J, Partridge WP, Epling WS, Currier NW, Yonushonis T (2006) Catal Today 114:102

    Article  CAS  Google Scholar 

  39. Lindholm A, Currier NW, Fridell E, Yezerets A, Olsson L (2007) Appl Catal B: Environ 75:78

    Article  CAS  Google Scholar 

  40. Cumaranatunge L, Mulla SS, Yezerets A, Currier NW, Delgass WN, Ribeiro FH (2007) J Catal 246:29

    Article  CAS  Google Scholar 

  41. Pihl JA, Parks II JE, Daw CS, Root TW (2006) SAE Technical Paper Series 2006-01-3441

  42. Kim DH, Chin Y-H, Kwak JH, Szanyi J, Peden CHF (2005) Catal Lett 105:259

    Article  CAS  Google Scholar 

  43. Zhaoqiong L, Anderson JA (2004) J Catal 224:18

    Article  Google Scholar 

  44. Frola F, Prinetto F, Ghiotti G, Castoldi L, Nova I, Lietti L, Forzatti P (2007) Catal Today 126:81

    Article  CAS  Google Scholar 

  45. Nova I, Lietti L, Castoldi L, Tronconi E, Forzatti P (2006) J Catal 239:244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Natural Sciences and Engineering Research Council of Canada Discovery Grant Program and Kuwait University for financial support and Johnson Matthey for the sample provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William S. Epling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

AL-Harbi, M., Epling, W.S. Investigating the Effect of NO Versus NO2 on the Performance of a Model NO X Storage/Reduction Catalyst. Catal Lett 130, 121–129 (2009). https://doi.org/10.1007/s10562-009-9912-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-9912-3

Keywords

Navigation