Skip to main content
Log in

Synthesis of Dihydropyrimidinones Using Large Pore Zeolites

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of dihydropyrimidin-2(1H)-one (DHPM) belongs to one of the important class of therapeutic and pharmacological active compound, were synthesized through the multicomponent reactions (MCRs) of aldehydes, ethyl acetoacetate and urea, followed by the heterogeneous catalyzed Biginelli reaction. In the present endeavour, medium (ZSM-5) and large pore zeolites (Y, BEA and MOR) as well as dealuminated zeolites BEA, were studied as catalysts. An excellent activity for DHPMs synthesis is achieved by optimizing accessibility of the reactants to the active sites and the surface polarity of zeolite catalysts. Moreover, the mechanism of Biginelli reaction was studied by means of GAUSSVIEW energy calculations of adsorbed acylimine intermediate on zeolite by using the density functional method (DFT).

Graphical Abstract

Zeolite assisted heterogeneous Biginelli reaction

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kappe CO (1993) Tetrahedron 49:6963

    Google Scholar 

  2. Patil AD, Kumar NV, Kokke WC, Bean MF, Freyer AJ, Brosse CD, Mai S, Truneh A, Faulkner DJ, Carte B, Breen AL, Hertzberg RP, Johnson RK, Westley JW, Potts BCM (1995) J Org Chem 60:1188

    Article  Google Scholar 

  3. Biginelli P (1893) Gazz Chim Ital 23:416

    Google Scholar 

  4. Folkers K, Harwood HJ, Johnson TB (1932) J Am Chem Soc 54:3751

    Article  CAS  Google Scholar 

  5. Hu EH, Silder DR, Dolling UHJ (1998) J Org Chem 63:3457

    Google Scholar 

  6. Adapa SR, Alam MM, Varala R (2003) Synlett 1:70

    Google Scholar 

  7. Paraskar AS, Dewkar GK, Sudailal A (2003) Tetrahedron Lett 44:3308

    Article  Google Scholar 

  8. Bussolar JC, McDonnell PA (2000) J Org Chem 65:6779

    Google Scholar 

  9. Khabazzadeh H, Saidi K, Sheibani H (2008) Bioorg Med Chem Lett 18:280

    Article  Google Scholar 

  10. Chen X, Peng Y (2008) Catal Lett 122:313

    Google Scholar 

  11. Yadav JS, Reddy BVS, Reddy KB, Raj KS, Prasad AR (2001) J Chem Soc Perkin Trans 1:1941

    Google Scholar 

  12. Fazaeli R, Tangestaninejad S, Aliyan H, Moghadam M (2006) Appl Catal A Gen 309(1):51

    Article  Google Scholar 

  13. Rafiee E, Shahbazi F (2006) J Mol Catal A Chem 250(1–2):61

    Google Scholar 

  14. Rafiee E, Jafari H (2006) Bioorg Med Chem Lett 16(9):2466

    Article  Google Scholar 

  15. Salehi P, Dabiri M, Zolfigol MA, Bodaghi Fard MA (2003) Tetrahedron Lett 44(14):2891

    Article  Google Scholar 

  16. Shaabani A, Bazgir A, Teimouri F (2003) Tetrahedron Lett 44(4):859

    Article  Google Scholar 

  17. Radha Rani V, Srinivas N, Radhakishan M, Kulkarni SJ, Raghavan KV (2001) Green Chem 3:306

    Google Scholar 

  18. Hegedus A, Hell Z, Vigh I (2006) Synth Commun 36:136

    Google Scholar 

  19. Tajbakhsh M, Mohajerani B, Heravi MM, Ahmadi AN (2005) J Mol Catal A Chem 236(1–2):219

    Google Scholar 

  20. Wagholikar SG, Mayadevi S, Jacob NE, Sivasanker S (2006) Microporous Mesoporous Mater 95:16

    Article  Google Scholar 

  21. Srivastava A, Singh RM (2005) Ind J Chem B 44B:1868

    CAS  Google Scholar 

  22. Climent MJ, Corma A, Velty A (2004) Appl Catal A 263:155

    Article  CAS  Google Scholar 

  23. Barthomeuf D (1987) Mater Chem Phys 17:49

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford

  25. Fernandez AB, Boronat M, Blasco T, Corma A (2005) Angew Chem Int Ed 44:2373

    Article  Google Scholar 

  26. Fernandez AB, Lezcano-Gonzalez I, Boronat M, Blasco T, Corma A (2009) Phys Chem Chem Phys 11:5141

    Article  Google Scholar 

Download references

Acknowledgment

The authors are thankful to the Director, SVNIT, Surat, for providing research and financial assistance. The authors would also like to thank Sud-Chemie India Pvt. Ltd., India, for characterization and gift of samples of zeolites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpana C. Maheria.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 666 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mistry, S.R., Joshi, R.S., Sahoo, S.K. et al. Synthesis of Dihydropyrimidinones Using Large Pore Zeolites. Catal Lett 141, 1541–1547 (2011). https://doi.org/10.1007/s10562-011-0639-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0639-6

Keywords

Navigation