Skip to main content

Advertisement

Log in

Enhanced Photocatalytic Reduction of CO2 on Rutile TiO2/MgAl Layered Double Oxides with H2O Under Ambient Temperature

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Photocatalytic reduction of CO2 with H2O is a fascinating approach to convert CO2 into available fuels using solar energy as driven force. However, it still suffers from low efficiency owing to the instinct stability of CO2. In this work, a hybrid photocatalyst of rutile TiO2 nanorods supported on MgAl layered double oxides (TiO2/MgAl-LDO) were designed and facilely fabricated via an in situ growth followed by a high temperature calcination process. The resulted TiO2/MgAl-LDO demonstrated significantly enhanced photocatalytic reduction of CO2 with the optimal CO and CH4 evolution of 0.65 and 1.60 μmol in 8 h reaction under ambient temperature, which is ca. 4.6 and 48 times that of TiO2 respectively. X-ray photoelectron spectroscopy revealed a strong electron interaction between TiO2 and MgAl-LDO, as well as electrochemical characterization showed enhanced photocurrent, suggesting a promoted charge separation in photocatalytic process. CO2-temperature-programmed desorption (CO2-TPD) unveiled the relatively active bicarbonate, bidentate carbonate and monodentate carbonate species were formed on MgAl-LDO, which could boost the CO2 reduction half-reaction. Meanwhile, NH3-TPD revealed acidic sites existed in TiO2/MgAl-LDO, which could act as active sites for H2O adsorption and activation and thus promote the H2O oxidation half-reaction. The strategy of simultaneous promotion on the reduction and the oxidation half-reactions will open a new vane to fabricate highly efficient catalysts toward photocatalytic reduction of CO2 with H2O.

Graphical Abstract

A hybrid photocatalyst of MgAl layered double oxides supported rutile TiO2 with abundant acidic and/or basic sites exhibit significant enhancement on the photocatalytic reduction of CO2 with H2O under ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xiong J, Song P, Di J, Li H (2019) Appl Catal B 256:117788

    CAS  Google Scholar 

  2. Munawar K, Jarnuzi G, Tribidasari AI, Aminah U (2019) Renew Sustain Energy Rev 113:109246

    Google Scholar 

  3. Liu LJ, Jiang YQ, Zhao HL, Chen JT, Cheng JL, Yang K, Li Y (2016) ACS Catal 6:1097

    CAS  Google Scholar 

  4. Wang CL, Sun ZX, Zheng Y, Hu YH (2019) J Mater Chem A 7:865

    CAS  Google Scholar 

  5. Voiry D, Shin HS, Loh KP, Chhowalla M (2018) Nat Rev Chem 2:0105

    CAS  Google Scholar 

  6. Inoue T, Konishi S, Fujishima A, Honda K (1979) Nature 277:637

    CAS  Google Scholar 

  7. Shehzad N, Tahir M, Johari K, Murugesan T, Hussain M (2018) J CO2 Util 26:98

    CAS  Google Scholar 

  8. Zhang T, Low J, Koh K, Yu J, Asefa T (2018) ACS Sustain Chem Eng 6:531

    Google Scholar 

  9. Zhang L, Xie C, Jiu H, Meng Y, Zhang Q, Gao Y (2018) Catal Lett 148:2812

    CAS  Google Scholar 

  10. Li XB, Xiong J, Gao XM, Huang JT, Feng ZJ, Chen Z, Zhu YF (2019) J Alloy Compd 802:196

    CAS  Google Scholar 

  11. Yang Y, Wu JJ, Xiao TT, Tang Z, Shen JY, Li HJ, Zhou Y, Zou ZG (2019) Appl Catal B 255:117771

    CAS  Google Scholar 

  12. Zhang X, Zhang X, Wang X, Wang D, Liu L, Ye J (2018) Chin J Catal 39:973

    CAS  Google Scholar 

  13. Xu Q, Yu J, Zhang J, Zhang J, Liu G (2015) Chem Commun 51:7950

    CAS  Google Scholar 

  14. Zhao H, Liu L, Andino JM, Li Y (2013) J Mater Chem A 1:8209

    CAS  Google Scholar 

  15. Wang W, An W, Ramalingam B, Mukherjee S, Niedzwiedzki DM, Gangopadhyay S, Biswas P (2012) J Am Chem Soc 134:11276

    CAS  PubMed  Google Scholar 

  16. Tseng IH, Wu J, Chou HY (2004) J Catal 221:432

    CAS  Google Scholar 

  17. Wei Y, Wu X, Zhao Y, Wang L, Zhao Z, Huang X, Liu J, Li J (2018) Appl Catal B 236:445

    CAS  Google Scholar 

  18. Abdullah H, Khan MMR, Ong HR, Yaakob Z (2017) J CO2 Util 22:15

    CAS  Google Scholar 

  19. Ran J, Jaroniec M, Qiao SZ (2018) Adv Mater 30:1704649

    Google Scholar 

  20. Tu W, Zhou Y, Zou Z (2014) Adv Mater 26:4607

    CAS  PubMed  Google Scholar 

  21. Nolan M (2018) J Mater Chem A 6:9451

    CAS  Google Scholar 

  22. Ma Y, Wang Z, Wang J, Xu X (2017) Chin J Catal 38:1956

    CAS  Google Scholar 

  23. He Z, Tang J, Shen J, Chen J, Song S (2016) Appl Surf Sci 364:416

    CAS  Google Scholar 

  24. Liu L, Zhao C, Zhao H, Pitts D, Li Y (2013) Chem Commun 49:3664

    CAS  Google Scholar 

  25. Feng X, Pan F, Zhao H, Deng W, Zhang P, Zhou H, Li Y (2018) Appl Catal B 238:274

    CAS  Google Scholar 

  26. Li H, Wu X, Wang J, Gao Y, Li L, Shih K (2016) Int J Hydrog Energ 41:8479

    CAS  Google Scholar 

  27. Li Q, Zong L, Li C, Yang J (2014) Appl Surf Sci 319:16

    CAS  Google Scholar 

  28. Wang F, Zhou Y, Li P, Kuai L, Zou Z (2016) Chin J Catal 37:863

    CAS  Google Scholar 

  29. Liu Q, Han Y, Cai J, Crumlin EJ, Li Y, Liu Z (2018) Catal Lett 148:1686

    CAS  Google Scholar 

  30. Chong R, Su C, Du Y, Fan Y, Ling Z, Chang Z, Li D (2018) J Catal 363:92

    CAS  Google Scholar 

  31. Delidovich I, Palkovits R (2015) J Catal 327:1

    CAS  Google Scholar 

  32. Gao Y, Zhang Z, Wu J, Yi X, Zheng A, Umar A, O’Hare D, Wang Q (2013) J Mater Chem A 1:12782

    CAS  Google Scholar 

  33. Zou Y, Wang X, Wu F, Yu S, Hu Y, Song W, Liu Y, Wang H, Hayat T, Wang X (2017) ACS Sustain Chem Eng 5:1173

    CAS  Google Scholar 

  34. Koilraj P, Kamura Y, Sasaki K (2017) ACS Sustain Chem Eng 5:9053

    CAS  Google Scholar 

  35. Wang G, Wang B, Su C, Li D, Zhang L, Chong R, Chang Z (2018) J Catal 359:287

    CAS  Google Scholar 

  36. Flores-Flores M, Luevano-Hipolito E, Torres Martinez LM, Morales-Mendoza G, Gomez R (2018) J Photochem Photobiol A 363:68

    CAS  Google Scholar 

  37. Chen D, Li Y, Zhang J, Zhou J, Guo Y, Liu H (2012) Chem Eng J 185:120

    Google Scholar 

  38. Chang P, Lee T, Chang Y, Chen S (2013) Chemsuschem 6:1076

    CAS  PubMed  Google Scholar 

  39. Dou Y, Zhang S, Pan T, Xu S, Zhou A, Pu M, Yan H, Han J, Wei M, Evans DG, Duan X (2015) Adv Funct Mater 25:2243

    CAS  Google Scholar 

  40. Zhang S, Cai W, Yu J, Ji C, Zhao N (2017) Chem Eng J 310:216

    CAS  Google Scholar 

  41. McKenzie AL, Fishel CT, Robert DJ (1992) J Catal 138:547

    CAS  Google Scholar 

  42. Feng J, Ma C, Miedziak PJ, Edwards JK, Brett GL, Li D, Du Y, Morgan DJ, Hutchings GJ (2013) Dalton Trans 42:14498

    CAS  PubMed  Google Scholar 

  43. Arbeláez O, Orrego A, Bustamante F, Villa AL (2016) Catal Lett 146:725

    Google Scholar 

  44. Chen H, Ruan H, Lu X, Fu J, Langrish T, Lu X (2018) Mol Catal 445:94

    CAS  Google Scholar 

  45. Li C, Zhou G, Wang L, Dong S, Li J, Cheng T (2011) Appl Catal A 400:104

    CAS  Google Scholar 

  46. Dixit M, Mishra M, Joshi PA, Shah DO (2013) J Ind Eng Chem 19:458

    CAS  Google Scholar 

  47. Stolarczyk JK, Bhattacharyya S, Polavarapu L, Feldmann J (2018) ACS Catal 8:3602

    CAS  Google Scholar 

  48. Zhao G, Huang X, Wang X, Wang X (2017) J Mater Chem A 5:21625

    CAS  Google Scholar 

  49. Karamian E, Sharifnia S (2016) J CO2 Util 16:194

    CAS  Google Scholar 

  50. Kočí K, Obalová L, Šolcová O (2010) Chem Process Eng 31:395

    Google Scholar 

  51. Tan S, Zou L, Hu E (2008) Catal Today 131:125

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (51502078), the Major Project of Science and Technology, Education Department of Henan Province (17B610003, 19A150018 and 19A150019), Henan University (YQPY20170013), the program for Science & Technology Innovation Team in Universities of Henan Province (19IRTSTHN029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhixian Chang or Deliang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1499 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, R., Su, C., Wang, Z. et al. Enhanced Photocatalytic Reduction of CO2 on Rutile TiO2/MgAl Layered Double Oxides with H2O Under Ambient Temperature. Catal Lett 150, 1061–1071 (2020). https://doi.org/10.1007/s10562-019-02991-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02991-5

Keywords

Navigation