Skip to main content
Log in

Preparation of Temperature-Controlled Heteropolyacid Ionic Liquids and Their Application for Synthesis of Diphenyl Carbonate

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

First, an intermediate ionic liquid [Bmim]Cl and Keggin-type heteropolyacids with different metal vacancies were prepared, and then prepared six heteropolyacid ionic liquids by the ion exchange method, and these liquids were tested and analyzed for chemical structures, crystal structures, thermal stability, and apparent morphology. After that, the six heteropolyacid ionic liquids were used to catalyze the transesterification reaction between phenol and dimethyl carbonate (DMC) to synthesize diphenyl carbonate (DPC), to explore the effects of reaction temperature, reaction time, and catalyst dosage on the catalytic performance, and reveal the catalytic mechanism. The results showed that the six heteropolyacid ionic liquids prepared were the target products with good thermal stability. Compared with traditional catalysts Cp2TiCl2 and C16H36O4Ti, they had better catalytic performance in the catalytic process. Among them, Bmim4[Ti(H2O)TiMo11O39] manifested the best catalytic performance. Under the conditions that the molar ratio of raw materials DMC to phenol was 2:1, reaction temperature 180 °C, catalyst consumption 1.5% of the total mass of the raw materials, and reaction time 8 h, the conversion rate of phenol reached 46.17%, and the overall selectivity of products monophenyl carbonate (MPC) and DPC was 98.89%. As a phase transfer catalyst characterized by a "homogeneous phase at high temperature and separation at low temperature," the catalyst can be self-assembled in the catalytic process with the temperature change. Therefore, they can be recycled and reused through simple washing and filtering at the end of the reaction. After five times of recycling, the catalytic performance of the catalyst reduces significantly, in which case the fresh catalyst should be added to maintain a good catalytic performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 3

Similar content being viewed by others

References

  1. Pyo SH, Park JH, Chang TS (2017) Curr Opin Green Sust 5:61

    Article  Google Scholar 

  2. Liu T, Hu J, Yong L (2019) J Anal Methods Chem 11:1

    Google Scholar 

  3. Baral ER, Lee JH, Kim JG (2018) J Org Chem 83:11768

    Article  CAS  PubMed  Google Scholar 

  4. Kim WB, Joshi UA, Lee JS (2004) Ind Eng Chem Res 43:1897

    Article  CAS  Google Scholar 

  5. Fukuoka S, Fukawa I, Adachi T (2019) Org Process Res Dev 23:145

    Article  CAS  Google Scholar 

  6. Mishra V, Sharma R, Mahajan K (2021) JoMM 4:61

    Google Scholar 

  7. Yilbas BS, Abubakar AA, Al-Qahtani H (2021) Polymers 13:1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Figueiredo MC, Trieu V, Eiden S (2018) ACS Catal 8:3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao Y, Zhao X, Zhang M (2019) Mater Sci Eng R Rep 472:012055

    CAS  Google Scholar 

  10. Peng M, Hong C, Cai N (2020) Mol Catal 482:110684

    Article  CAS  Google Scholar 

  11. Yang X, Bai H, Qian MM (2019) Mater Chem Phys 234:48

    Article  CAS  Google Scholar 

  12. Qu Y, Yang H, Wang S (2017) Chem Res Chin Univ 33:804

    Article  CAS  Google Scholar 

  13. Sun Y, Gao X, Yang N (2019) Ind Eng Chem Res 58:7937

    Article  CAS  Google Scholar 

  14. Zhang Y, Wang S, Xiao Z (2016) Res Chem Intermediat 42:7213

    Article  CAS  Google Scholar 

  15. Biying AO, Yuanting KT, Hosmane NS (2017) J Organomet Chem 849:195

    Article  Google Scholar 

  16. Dibenedetto A, Angelini A, Bitonto L (2014) Chemsuschem 7:1155

    Article  CAS  PubMed  Google Scholar 

  17. Jia B, Cao P, Zhang H (2019) J Mater Sci 54:9466

    Article  CAS  Google Scholar 

  18. Dibenedetto A, Angelini A, Dibitonto L (2014) Chemsuschem 7:1155

    Article  CAS  PubMed  Google Scholar 

  19. Li Z, Wang Y, Ding X (2009) J Nat Gas Chem 218:104

    Article  Google Scholar 

  20. Weiqing Z, Xinqiang Z, Yanji W (2004) Appl Catal A-Gen 260:19

    Article  Google Scholar 

  21. Wang S, Bai R, Mei F (2009) Catal Commun 11:202

    Article  CAS  Google Scholar 

  22. Yang H, Xiao Z, Qu Y (2018) Res Chem Intermediat 44:99

    Google Scholar 

  23. Tang R, Chen T, Chen Y (2014) Chin J Catal 35:457

    Article  CAS  Google Scholar 

  24. Wang Q, Li C, Guo M (2015) Inorg Chem Front 2:47

    Article  Google Scholar 

  25. Niu H, Yao J, Wang Y (2005) J Mol Catal A-Chem 235:240

    Article  CAS  Google Scholar 

  26. Dsta B, Jie YA, Yue WA (2007) J Mol Catal A-Chem 268:120

    Article  Google Scholar 

  27. Wang C, Guo T, Sun M (2018) Sci Adv Mater 10:779

    Article  CAS  Google Scholar 

  28. Xiao Z, Yang H, Zhang H (2018) Chem Pap 72:2347

    Article  CAS  Google Scholar 

  29. Wang S, Li C, Xiao Z (2016) J Mol Catal A-Chem 420:26

    Article  CAS  Google Scholar 

  30. Cao M, Meng Y, Lu Y (2005) Catal Commun 6:802

    Article  CAS  Google Scholar 

  31. Wang S, Niu H, Wang J (2019) J Alloys Compd 777:18

    Article  CAS  Google Scholar 

  32. Zhang J, Gao Y, Zhang J (2018) Chem Cent J 12:1

    Article  Google Scholar 

  33. Qu Y, Wang S, Chen T (2017) Res Chem Intermediat 43:2725

    Article  CAS  Google Scholar 

  34. Chen T, Han H, Yao J (2007) Catal Commun 8:1361

    Article  CAS  Google Scholar 

  35. E YS, Wang Q, Zhao WZ (2020) Contemporary chemical industry 49:802

  36. Yin G, Jia C, Kitamura T (2000) Catal Letters 69:89

    Article  CAS  Google Scholar 

  37. Du Z, Kang W, Cheng T (2006) J Mol Catal A-Chem 246:200

    Article  CAS  Google Scholar 

  38. Lee H, Kim SJ, Ahn BS (2003) Catal Today 87:139

    Article  CAS  Google Scholar 

  39. Su KM, Li ZH, Ding M (2011) Adv Mat Res 233:124

    Google Scholar 

  40. Kore R, Kelley SP, Aduri P (2018) Dalton Trans 47:7795

    Article  CAS  PubMed  Google Scholar 

  41. Deshmukh KM, Qureshi ZS, Dhake KP (2010) Catal Commun 12:207

    Article  CAS  Google Scholar 

  42. Ghasemi MH, Kowsari E, Shafiee A (2016) Tetrahedron Lett 57:150

    Google Scholar 

  43. Yang GP, Wu X, Yu B (2019) ACS Sustain Chem Eng 7:3727

    Article  CAS  Google Scholar 

  44. Rajabi F, Wilhelm C, Thiel WR (2020) Green Chem 22:4438

    Article  CAS  Google Scholar 

  45. Yang G, Li K, Zeng K (2021) RSC Adv 11:10610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han X, Ouyang K, Xiong C (2017) Appl Catal A-Gen 543:115

    Article  CAS  Google Scholar 

  47. Guo LY, Ran WT, Wang HY (2021) Preparation method and application of a titanium-based heteropolyacid ionic liquid catalyst, CN: 202111357048.4.

  48. Guo LY, Deng LL, Jin XC (2018) Acta Petrolei Sin 34:71

    Google Scholar 

  49. Li J, Yang Z, Li S (2020) J Ind Eng Chem 82:1

    Article  Google Scholar 

  50. Liu Y, Yao X, Liu X (2021) J Phys Chem C 125:25478

    Article  CAS  Google Scholar 

  51. Shahabi M, Tabatabaee M, Keshavarz M (2019) Catal Commun 131:105748

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52103225, 51973051). Key project of Education Department of Liaoning Province (Grant No. LZGD2020005), and general project of Education Department of Liaoning Province (Grant No. LJKZ0164).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyue Wang or Liying Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Wang, H., Shan, L. et al. Preparation of Temperature-Controlled Heteropolyacid Ionic Liquids and Their Application for Synthesis of Diphenyl Carbonate. Catal Lett 153, 1308–1318 (2023). https://doi.org/10.1007/s10562-022-04068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04068-2

Keywords

Navigation