Skip to main content
Log in

Size-Controlled Synthesis of Nano-Zeolites and Their Application to Light Olefin Synthesis

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

For the application of zeolites as heterogeneous catalysts, low diffusion resistance for hydrocarbons within the micropore is essential for improving product selectivity and catalyst lifetime. This problem has been overcome by reducing the crystal size. This review introduces size-controlled preparation of nano-sized zeolites via hydrothermal synthesis in water/surfactant/organic solvent (emulsion method) and their application to heterogeneous catalysts. The ionicity of the hydrophilic group in surfactant molecules and the concentration of the Si source affected the crystallinity and morphology of zeolites prepared using the emulsion method. When using a non-ionic surfactant, mono-dispersed silicalite-1 nanocrystals ~60 nm in diameter were successfully prepared. Nano- and macro-ZSM-5 zeolites with crystal sizes of ~150–200 nm and 1.5 μm, respectively, were prepared and applied to n-hexane cracking and acetone-to-olefin reactions to investigate the effect of zeolite crystal size on catalytic stability and light olefin yield. Application of nano-zeolite to light olefin production was effective in achieving faster mass transfer of hydrocarbon molecules within the micropore, which led to improvements in olefin yields and catalyst lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ogura M, Shinomiya S, Tateno J, Nara Y, Nomura M, Kikuchi E, Matsukata M (2001) Appl Catal A Gen 219:33

    Article  CAS  Google Scholar 

  2. Groen JC, Peffer LAA, Moulijn JA, Perez-Ramirez J (2004) Microporous Mesoporous Mater 69:29

    Article  CAS  Google Scholar 

  3. Groen JC, Jansen JC, Moulijn JA, Perez-Ramirez J (2004) J Phys Chem B 108:13062

    Article  CAS  Google Scholar 

  4. Tsapatsis M, Lovallo M, Davis ME (1996) Microporous Mater 5:381

    Article  CAS  Google Scholar 

  5. Ravishankar R, Kirschhock C, Schoeman BJ, Vanoppen P, Grobet PJ, Storck S, Maier WF, Martens JA, DeSchryver FC, Jacobs PA (1998) J Phys Chem B 102:2633

    Article  CAS  Google Scholar 

  6. Mintova S, Olson NH, Valtchev V, Bein T (1999) Science 283:958

    Article  CAS  Google Scholar 

  7. Grieken RV, Sotelo JL, Menendez JM, Melero JA (2000) Microporous Mesoporous Mater 39:135

    Article  Google Scholar 

  8. Mintva S, Valtchev V (2002) Microporous Mesoporous Mater 55:171

    Article  Google Scholar 

  9. Hincapie BO, Garces LJ, Zhang Q, Sacco A, Suib SL (2004) Microporous Mesoporous Mater 67:1387

    Article  Google Scholar 

  10. Song W, Justice RE, Jones CA, Grassian VH, Larsen SC (2004) Langmuir 20:4696

    Article  CAS  Google Scholar 

  11. Song W, Justice RE, Jones CA, Grassian VH, Larsen SC (2004) Langmuir 20:8301

    Article  CAS  Google Scholar 

  12. Song W, Grassian VH, Larsen SC (2005) Chem Commun 23:2951

    Article  Google Scholar 

  13. Larlus O, Mintova S, Bein T (2006) Microporous Mesoporous Mater 96:405

    Article  CAS  Google Scholar 

  14. Mintova S, Valtchev V, Onfroy T, Marichal C, Knozinger H, Bein T (2006) Microporous Mesoporous Mater 90:237

    Article  CAS  Google Scholar 

  15. Morales-Pacheco P, Alvarez F, Del Angel P, Bucio L, Dominguez JM (2007) J Phys Chem C 111:2368

    Article  CAS  Google Scholar 

  16. Kumar S, Davis TM, Ramanan H, Penn RL, Tsapatsis M (2007) J Phys Chem B 111:3393

    Google Scholar 

  17. Tosheva L, Valtchev VP (2005) Chem Mater 7:2494

    Article  Google Scholar 

  18. Larsen SC (2007) J Phys Chem C 111:18464

    Article  CAS  Google Scholar 

  19. Tago T, Nishi M, Kouno Y, Masuda T (2004) Chem Lett 33:1040

    Article  CAS  Google Scholar 

  20. Tago T, Iwakai K, Nishi M, Masuda T (2006) Stud Surf Sci Catal 159:185

    Article  CAS  Google Scholar 

  21. Tago T, Iwakai K, Nishi M, Masuda T (2009) J Nanosci Nanotechnol 9:612

    Article  CAS  Google Scholar 

  22. Tago T, Aoki D, Iwakai K, Masuda T (2009) Top Catal 52:865

    Article  CAS  Google Scholar 

  23. Iwakai K, Tago T, Konno H, Nakasaka Y, Masuda T (2011) Microporous Mesoporous Mater 141:167

    Article  CAS  Google Scholar 

  24. Masuda T, Fukumoto N, Kitamura M, Mukai SR, Hashimoto K, Tanaka T, Funabiki T (2001) Microporous Mesoporous Mater 48:239

    Article  CAS  Google Scholar 

  25. Tago T, Sakamoto M, Iwakai K, Nishihara H, Mukai SR, Tanaka T, Masuda T (2009) J Chem Eng Jpn 42:162

    Article  Google Scholar 

  26. Tago T, Konno H, Sakamoto M, Nakasaka Y, Masuda T (2011) Appl Catal A Gen 403:183

    Article  CAS  Google Scholar 

  27. Naik SP, Chen JC, Chiang AST (2002) Microporous Mesoporous Mater 54:293

    Article  CAS  Google Scholar 

  28. Lee S, Carr CS, Shantz DF (2005) Langmuir 21:12031

    Article  CAS  Google Scholar 

  29. Kuechl DE, Benin AI, Knight LM, Abrevaya H, Wilson ST, Sinkler W, Mezza TM, Willis RR (2010) Microporous Mesoporous Mater 127:104

    Article  CAS  Google Scholar 

  30. Burkett SL, Davis ME (1994) J Phys Chem 98:4647

    Article  CAS  Google Scholar 

  31. Burkett SL, Davis ME (1995) Chem Matter 7:920

    Article  CAS  Google Scholar 

  32. DeMoor PPEA, Beelen TPM, Komanschek BU, Beck LW, Wagner P, Davis ME, Santen RA (1999) Chem Eur J 5:2083

    Article  CAS  Google Scholar 

  33. DeMoor PPEA, Beelen TPM, Van Santen RA (1999) J Phys Chem C 103:1639

    CAS  Google Scholar 

  34. Mitsui T, Machida Y (1969) J Soc Cosmet Chem 20:199

    CAS  Google Scholar 

  35. Fukuoka T, Morita T, Konishi M, Imura T, Sakai H, Kitamoto D (2007) App Microbiol Biotechnol 76:801

    Article  CAS  Google Scholar 

  36. Niwa M, Murakami Y (1989) J Phys Chem Solid 50:487

    Article  CAS  Google Scholar 

  37. Niwa M, Yamazaki K, Murakami Y (1991) Ind Eng Chem Res 30:38

    Article  CAS  Google Scholar 

  38. Katada N, Niwa M (1996) Chem Vap Depos 2:125

    Article  CAS  Google Scholar 

  39. Tago T, Konno H, Ikeda S, Yamazaki S, Ninomiya W, Nakasaka Y, Masuda T (2011) Catal Today 164:158

    Article  CAS  Google Scholar 

  40. Masuda T, Asanuma T, Shouji M, Mukai SR, Kawase M, Hashimoto K (2003) Chem Eng Sci 58:649

    Article  CAS  Google Scholar 

  41. Tago T, Iwakai K, Morita K, Tanaka K, Masuda T (2005) Catal Today 105:662

    Article  CAS  Google Scholar 

  42. Botella P, Corma A, Iborra S, Montón R, Rodríguez I, Costa V (2007) J Catal 250:161

    Article  CAS  Google Scholar 

  43. Serrano DP, Aguado J, Escola JM, Rodriguez JM (2005) J Anal Appl Pyrol 74:353

    Article  CAS  Google Scholar 

  44. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Nature 461:246

    Article  CAS  Google Scholar 

  45. Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger RJ, Chmelka BF, Ryoo R (2011) Science 333:328

    Article  CAS  Google Scholar 

  46. Rhodes KH, Davis SA, Caruso F, Zhang BJ, Mann S (2000) Chem Mater 12:2832

    Article  CAS  Google Scholar 

  47. Groen JC, Peffer LAA, Perez-Ramirez J (2003) Microporous Mesoporous Mater 60:1

    Article  CAS  Google Scholar 

  48. Srivastava R, Choi M, Ryoo R (2006) Chem Commun 43:4489

    Article  Google Scholar 

  49. Shetti VN, Kim J, Srivastava R, Choi M, Ryoo R (2008) J Catal 254:296

    Article  CAS  Google Scholar 

  50. Serrano DP, Aguado J, Escola JM, Rodriguez JM, Peral A (2006) Chem Mater 18:2462

    Article  CAS  Google Scholar 

  51. Perez-Ramirez J, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Chem Soc Rev 37:2530

    Article  CAS  Google Scholar 

  52. Serrano DP, Aguado J, Escola JM, Rodriguez JM, Peral A (2008) J Mater Chem 18:4210

    Article  CAS  Google Scholar 

  53. Serrano DP, Aguado J, Escola JM, Rodriguez JM, Peral A (2010) J Catal 276:152

    Article  CAS  Google Scholar 

  54. Serrano DP, Sanz R, Pizarro P, Moreno I (2009) Chem Commun 11:1407

    Article  Google Scholar 

  55. Yosimura Y, Kijima N, Hayakawa T, Murata K, Suzuki K, Mizukami F, Matano K, Konishi T, Oikawa T, Saito M, Shiojima T, Shiozawa K, Wakui K, Sawada G, Sato K, Matsuo S, Yamaoka N (2000) Catal Surv Jpn 4:157

    Article  Google Scholar 

  56. Magnoux P, Cartraud P, Mignard S, Guisnet M (1987) J Catal 106:242

    Article  CAS  Google Scholar 

  57. Corma A, Gonzàlez-Alfaro V, Orchillès AV (1995) Appl Catal A Gen 129:203

    Article  CAS  Google Scholar 

  58. Katada N, Kageyama Y, Takahara K, Kanai K, Beguma HA, Niwa M (2004) Catal A Chem 211:119

    Article  CAS  Google Scholar 

  59. Stocker M (1999) Microporous Mesoporous Mater 29:3

    Article  CAS  Google Scholar 

  60. Keil FJ (1999) Microporous Mesoporous Mater 29:49

    Article  CAS  Google Scholar 

  61. Dahl IM, Wendelbo R, Andersen A, Akporiaye D, Mostad H, Fuglerud T (1999) Microporous Mesoporous Mater 29:159

    Article  CAS  Google Scholar 

  62. Oikawa H, Shibata Y, Inazu K, Iwase Y, Murai K, Hyodo S, Kobayashi G, Baba T (2006) Appl Catal A Gen 312:181

    Article  CAS  Google Scholar 

  63. Mentzel UV, Holm MS (2011) Appl Catal A Gen 396:59

    Article  CAS  Google Scholar 

  64. Gayubo AG, Valle B, Aguayo AT, Olazar M, Bilbao J (2010) Ind Eng Chem Res 49:123

    Article  CAS  Google Scholar 

  65. Novakova J, Kubelkova L, Dolejsek Z (1987) J Mol Catal 39:195

    Article  CAS  Google Scholar 

  66. Kubelkova L, Cejka J, Novakova J (1991) Zeolite 11:48

    Article  CAS  Google Scholar 

  67. Kubelkova L, Novakova J (1991) Zeolite 11:822

    Article  CAS  Google Scholar 

  68. Biaglow AI, Sepa J, Gorte RJ, White D (1995) J Catal 151:373

    Article  CAS  Google Scholar 

  69. Panov AG, Fripiat JT (1998) J Catal 178:188

    Article  CAS  Google Scholar 

  70. Panov A, Fripiat JJ (1998) Langmuir 14:3788

    Article  CAS  Google Scholar 

  71. Song WG, Nicholas JB, Haw JF (2001) J Phys Chem B 105:4317

    Article  CAS  Google Scholar 

  72. Corma A, Martinez-Triguero J (1997) J Catal 165:102

    Article  CAS  Google Scholar 

  73. Inagaki S, Takechi K, Kubota Y (2010) Chem Commun 46:2662

    Article  CAS  Google Scholar 

  74. Kotrel S, Rosynek MP, Lunsford JH (2000) J Catal 191:55

    Article  CAS  Google Scholar 

  75. Babitz SM, Williams BA, Miller JT, Snurr RQ, Haag WO, Kung HH (1999) Appl Catal A Gen 179:71

    Article  CAS  Google Scholar 

  76. Wielers AFH, Waarkamp M, Post MFM (1991) J Catal 127:51

    Article  CAS  Google Scholar 

  77. Mochizuki H, Yokoi T, Imai H, Watanabe R, Namba S, Kondo JN, Tatsumi T (2011) Microporous Mesoporous Mater 145:165

    Article  CAS  Google Scholar 

  78. Kimura T, Gao J, Sakashita K, Li XH, Asaoka S (2012) J Jpn Petrol Inst 55:40

    Article  CAS  Google Scholar 

  79. Konno H, Okamura T, Nakasaka Y, Tago T, Masuda T (2012) J Jpn Petrol Inst 55:267

    Google Scholar 

  80. Williams BA, Babitz SM, Miller JT, Snurr RQ, Kung HH (1999) Appl Catal A Gen 177:161

    Article  CAS  Google Scholar 

  81. Williams BA, Ji W, Miller JT, Snurr RQ, Kung HH (2000) Appl Catal A Gen 203:179

    Article  CAS  Google Scholar 

  82. Haag W O, Dessau RM (1984) Proceedings 8th International Congress Catalysis. Berlin, 2:305

  83. Jolly S, Saussey J, Bettahar MM, Lavalley JC, Benazzi E (1997) Appl Catal A Gen 156:71

    Article  CAS  Google Scholar 

  84. Corma AV, Orchillès AV (2000) Microporous Mesoporous Mater 35–36:21

    Article  Google Scholar 

  85. Komatsu T, Ishihara H, Fukui Y, Yashima T (2001) Appl Catal A Gen 214:103

    Article  CAS  Google Scholar 

  86. Kotrel S, Knozinger H, Gates BC (2006) Microporous Mesoporous Mater 35–36:11

    Google Scholar 

  87. Cruz-Cabeza AJ, Esquivel D, Jimenez-Sanchidrian C, Romero-Salguero FJ (2012) Materials 5:121

    Article  CAS  Google Scholar 

  88. Hirota Y, Nakano Y, Watanabe K, Uchida Y, Miyamoto M, Egashira Y, Nishiyama N (2012) Catal Lett 142:464

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Research Grant Program from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruoki Tago.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tago, T., Konno, H., Nakasaka, Y. et al. Size-Controlled Synthesis of Nano-Zeolites and Their Application to Light Olefin Synthesis. Catal Surv Asia 16, 148–163 (2012). https://doi.org/10.1007/s10563-012-9141-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-012-9141-4

Keywords

Navigation