Skip to main content
Log in

Differential evolution algorithms using hybrid mutation

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Differential evolution (DE) has gained a lot of attention from the global optimization research community. It has proved to be a very robust algorithm for solving non-differentiable and non-convex global optimization problems. In this paper, we propose some modifications to the original algorithm. Specifically, we use the attraction-repulsion concept of electromagnetism-like (EM) algorithm to boost the mutation operation of the original differential evolution. We carried out a numerical study using a set of 50 test problems, many of which are inspired by practical applications. Results presented show the potential of this new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Price, K.: An introduction to differential evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999)

    Google Scholar 

  3. Birbil, S.I., Fang, S.C.: An electromagnetism-like mechanism for global optimization. J. Glob. Optim. 25(3), 263–282 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Birbil, S.I., Fang, S.C., Sheu, R.L.: On the convergence of a population-based global optimization. J. Glob. Optim. 30, 301–318 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin (1996)

    MATH  Google Scholar 

  6. Ali, M.M., Törn, A.: Population set based global optimization algorithms: some modifications and numerical studies. Comput. Oper. Res. 31(10), 1703–1725 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Price, W.L.: Global optimization by controlled random search. J. Optim. Theory Appl. 40, 333–348. (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kaelo, P., Ali, M.M.: Probabilistic adaptations of point generation schemes in some global optimization algorithms. Optim. Methods Softw. 21(3), 343–57 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lampinen, J., Zelinka, I.: Mechanical engineering design optimization by differential evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 127–146. McGraw-Hill, London (1999)

    Google Scholar 

  10. Storn, R.: System design by constraint adaptation and differential evolution. IEEE Trans. Evol. Comput. 3(1), 22–34 (1999)

    Article  Google Scholar 

  11. Babu, B.V., Sastry, K.K.N.: Estimation of heat transfer parameters in a trickle-bed reactor using differential evolution and orthogonal collocation. Comput. Chem. Eng. 23(3), 327–339 (1999)

    Article  Google Scholar 

  12. Chiou, J.P., Wang, F.S.: Hybrid method of evolutionary algorithms for static and dynamic optimization problems with applications to a fed-batch fermentation process. Comput. Chem. Eng. 23(9), 1277–1291 (1999)

    Article  Google Scholar 

  13. Debels, D., DeReyck, B., Leus, R., Vanhoucke, M.: A hybrid scatter search/electromagnetism meta-heuristic for project scheduling. Eur. J. Oper. Res. 169(2), 638–653 (2005)

    Article  Google Scholar 

  14. http://www.icsi.berkey.edu/~storn/code.html

  15. Zaharie, D.: Critical values for the control parameters of differential evolution algorithms. In: Matousek, R., Osmera, P. (eds.) Proceedings of MENDEL 2002, 8th International Mendel Conference on Soft Computing, Bruno University of Technology, Faculty of Mechanical Engineering, pp. 62–67, Bruno (2002)

  16. Lee, M.H., Han, C., Chang, K.S.: Dynamic optimization of a continuous polymer reactor using a modified differential evolution algorithm. Ind. Eng. Chem. Res. 38(12), 4825–4831 (1999)

    Article  Google Scholar 

  17. Kaelo, P.: Some population set based methods for unconstrained global optimization. Ph.D. thesis, University of Witwatersrand (2005)

  18. Törn, A., Ali, M.M., Viitanen, S.: Stochastic global optimization: problem classes and solution techniques. J. Glob. Optim. 14, 437–447 (1999)

    Article  MATH  Google Scholar 

  19. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Glob. Optim. 31(4), 635–672 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chelouah, R., Siarry, P.: Genetic and Nelder–Mead algorithms for a more accurate global optimization of continuous multiminima functions. Eur. J. Oper. Res. 16(2), 335–348 (2003)

    Article  MathSciNet  Google Scholar 

  21. Dixon, L.C.W., Szegö, G.P.: The global optimization problem: an introduction. In: Towards Global Optimization, vol. 2, pp. 1–15. North-Holland, Amsterdam (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaelo, P., Ali, M.M. Differential evolution algorithms using hybrid mutation. Comput Optim Appl 37, 231–246 (2007). https://doi.org/10.1007/s10589-007-9014-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9014-3

Keywords

Navigation