Skip to main content
Log in

Synthesis of nanoparticles using vapor-phase decomposition of copper(II) acetylacetonate

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Experimental data on the synthesis of crystalline Cu, Cu2O, and CuO nanoparticles obtained earlier by the vapor-phase decomposition of copper(II) acetylacetonate (Cu(acac)2) were systematized and generalized. Studies were performed using a laminar flow reactor at atmospheric pressure within the ranges of precursor partial vapor pressure P prec = 0.06–44 Pa and reactor temperature from 432 to 1216°C. The decomposition of Cu(acac)2 was studied in an inert nitrogen atmosphere and in the presence of various reagents (water vapors, H2, O2, and CO). The composition of synthesized particles varied from pure copper to its oxides (Cu2O and CuO) depending on experimental conditions and used reagents. A semi-empirical kinetic model was proposed for describing the product dynamics. The hypothesis on the predominant role of copper dimers in a particle’s growth was stated. It was established that the composition of products is determined by the surface reactions on growing particles and is dependent on the ratio between the concentrations of the gaseous reagents. Calculated phase diagrams of the products of Cu(acac)2 decomposition in the presence of various reagents were in good agreement with experimental data. The proposed method of construction of the phase diagram of decomposition products can be employed for other systems. It was established that, upon the Cu(acac)2 decomposition in the presence of CO, carbon nano-onions were formed in addition to copper nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Sievers, R.E. and Sadlowski, J.E., Science (Washington, DC), 1978, vol. 201, p. 217.

    CAS  Google Scholar 

  2. Kodas, T.T. and Hampden-Smith, M.J., The Chemistry of Metal CVD, Weinheim: VCH, 1994.

    Google Scholar 

  3. Kanapilly, G.M., Tu, K.W., Larsen, T.B., Fogel, G.B., and Luna, R.J., J. Colloid Interface Sci., 1978, vol. 65, p. 553.

    Google Scholar 

  4. Slootman, F. and Parent, J.-C., J. Aerosol Sci., 1994, vol. 2, p. 15.

    Google Scholar 

  5. Onischuk, A.A., Strunin, V.P., Ushakova, M.A., and Panfilov, V.N., J. Aerosol Sci., 1997, vol. 28, p. 207.

    CAS  Google Scholar 

  6. Majumdar, D., Shefelbine, T.A., Kodas, T.T., and Glicksman, H.D., J. Mater. Res., 1996, vol. 11, p. 2861.

    CAS  Google Scholar 

  7. Holzschuh, H. and Suhr, H., Appl. Phys., A, 1990, vol. 51, p. 486.

    Google Scholar 

  8. Campbell, C.T., Daube, K.A., and White, J.M., Surf. Sci., 1987, vol. 182, p. 458.

    CAS  Google Scholar 

  9. Shiau, C.-Y. and Tsai, J.C., J. Chin. Inst. Chem. Eng., 1997, vol. 2, p. 55.

    Google Scholar 

  10. Du, F.-L., Cui, Z.-L., Zhang, Z.-K., and Chen, S.-Y., J. Nat. Gas Chem., 1997, vol. 6, p. 135.

    CAS  Google Scholar 

  11. Van der Meijden, J., PhD Thesis, Utrecht, The Netherlands, 1981.

  12. Klier, K., Adv. Catal., 1982, vol. 31, p. 243.

    Article  CAS  Google Scholar 

  13. Yurieva, T.M., Plyasova, L.M., Krieger, T.A., et al., React. Kinet. Catal. Lett., 1993, vol. 51, p. 495.

    CAS  Google Scholar 

  14. Klenov, D.O., Kryukova, G.N., and Plyasova, L.M., J. Mater. Chem., 1998, vol. 8, p. 1665.

    CAS  Google Scholar 

  15. Samsonov, G.B., Fiziko-khimicheskie svoistva okislov (Physicochemical Properties of Oxides), Moscow: Metallurgiya, 1978.

    Google Scholar 

  16. Pauleau, Y. and Fasasi, A.Y., Chem. Mater., 1991, vol. 3, p. 45.

    CAS  Google Scholar 

  17. Gerfin, T., Becht, M., and Dahmen, K.-H., Mater. Sci. Eng., B, 1993, vol. 17, p. 97.

    Google Scholar 

  18. Hammadi, Z., Lecohier, B., and Dallaporta, H., J. Appl. Phys., 1993, vol. 73, p. 5213.

    CAS  Google Scholar 

  19. Maruyama, T. and Shirai, T., J. Mater. Sci., 1995, vol. 30, p. 5551.

    CAS  Google Scholar 

  20. Okuyama, K., Shimada, M., Adachi, M., and Tohge, N., J. Aerosol Sci., 1993, vol. 24, p. 357.

    CAS  Google Scholar 

  21. Daroczi, L., Beck, M.T., Beke, D.L., et al., Mater. Sci. Forum, 1998, vols. 269–272, p. 319.

    Article  Google Scholar 

  22. Nasibulin, A.G., Ahonen, P.P., Richard, O., et al., J. Nanoparticle Res., 2001, vol. 3, p. 383.

    Google Scholar 

  23. Nasibulin, A.G., Kauppinen, E.I., Brown, D.P., and Jokiniemi, J.K., J. Phys. Chem., B, 2001, vol. 105, p. 11067.

    CAS  Google Scholar 

  24. Nasibulin, A.G., Richard, O., Kauppinen, E.I., et al., Aerosol Sci. Technol., 2002, vol. 36, p. 899.

    CAS  Google Scholar 

  25. Nasibulin, A.G., Altman, I.S., and Kauppinen, E.I., Chem. Phys. Lett., 2003, vol. 367, p. 771.

    CAS  Google Scholar 

  26. Nasibulin, A.G., Moisala, A., Brown, D.P., and Kauppinen, E.I., Carbon, 2003, vol. 41, p. 2711.

    CAS  Google Scholar 

  27. Winklmayr, W., Reischl, G.P., Linder, A.O., and Berner, A., J. Aerosol Sci., 1991, vol. 22, p. 289.

    CAS  Google Scholar 

  28. Brown, D.P., NIST SBIR, no. 97-1-58, Final Report, 1998, p. 106.

  29. Tsyganova, E.I., Mazurenko, G.A., Drobotenko, V.N., et al., Zh. Obshch. Khim., 1996, vol. 62, p. 499.

    Google Scholar 

  30. Petrov, Yu. I., Klastery i malye chastitsy (Clusters and Small Particles), Moscow: Nauka, 1986.

    Google Scholar 

  31. Bale, C.W., Hartrand, P., Degterov, S.A., et al., CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2002, vol. 26, p. 189.

    CAS  Google Scholar 

  32. Kulikov, I.S., Termodinamika oksidov. Spravochnik (The Thermodynamics of Oxides: A Handbook), Moscow: Metallurgiya, 1986.

    Google Scholar 

  33. Williams, D.B. and Carter, C.B., Transmission Electron Microscopy. A Textbook for Materials Science, New York: Plenum, 1996.

    Google Scholar 

  34. Rudyak, V. Ya., Krasnolutskii, S.L., Nasibulin, A.G., and Kauppinen, E.I., Dokl. Ross. Akad. Nauk, 2002, vol. 386, p. 624.

    Google Scholar 

  35. Kubaschewski, O., Cibula, A., and Moore, D.C., Gases and Metals, London: Morrison & Gibb, 1970.

    Google Scholar 

  36. Nagase, K., Zheng, Y., Kodama, Y., and Kakuta, J., J. Catal., 1999, vol. 187, p. 123.

    CAS  Google Scholar 

  37. Panyushin, L.A. and Smirnov, Yu. P., Laboratornyi praktikum po teorii metallurgicheskikh protsessov (Laboratory Manual on the Theory of Metallurgical Processes), Leningrad: LPI, 1988.

    Google Scholar 

  38. Brown, D.P., Nasibulin, A.G., Kauppinen, E.I., and Jokiniemi, J.K., Abstracts of Papers, “Int. Congr. for Particle Technology PARTEC 2001,” Nurnberg: Nurnberg Messe, 2001, p. 113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Kolloidnyi Zhurnal, Vol. 67, No. 1, 2005, pp. 5–25.

Original Russian Text Copyright © 2005 by Nasibulin, Shurygina, Kauppinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasibulin, A.G., Shurygina, L.I. & Kauppinen, E.I. Synthesis of nanoparticles using vapor-phase decomposition of copper(II) acetylacetonate. Colloid J 67, 1–20 (2005). https://doi.org/10.1007/s10595-005-0041-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10595-005-0041-4

Keywords

Navigation