Skip to main content
Log in

A model for multiphase flow and transport in porous media including a phenomenological approach to account for deformation—a model concept and its validation within a code intercomparison study

  • Original paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Multiphase flow processes in unsaturated cohesive soils are often affected by deformation due to swelling and shrinking as a result of varying water contents. This paper presents a model concept which is denoted ‘phenomenological’ in terms of the processes responsible for soil deformation, since the effects of deformation on flow and transport are only considered by constitutive relations that allow an adaptation of the hydraulic properties. This new model is validated in a detailed intercomparison study with two state-of-the-art models that are capable of explicitly describing the processes relevant for the deformation. A ‘numerical experiment’ with a state-of-the-art reference model is used to produce ‘measurement data’ for an inverse-modelling-based estimation of the model input parameters for the phenomenological concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assteerawatt, A., Bastian, P., Bielinski, A., Breiting, T., Class, H., Ebigbo, A., Eichel, H., Freiboth, S., Helmig, R., Kopp, A., Niessner, J., Ochs, S.O., Papafotiou, A., Paul, M., Sheta, H., Werner, D., Ölmann, U.: MUFTE-UG: structure, applications and numerical methods. Newsletter, International Groundwater Modeling Centre, Colorado School of Mines XXIII(2), 2 (2005)

    Google Scholar 

  2. Atkins, P.W.: Physikalische Chemie. VCH, Weinheim (1990)

    Google Scholar 

  3. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    Google Scholar 

  4. Bennethum, L.S.: Three pressures in swelling porous media. Reports 170, Center of Computational Mathematics (CCM), Denver (2001)

  5. Bennethum, L.S., Cushman, J.H.: Multiscale, hybrid mixture theory for swelling systems—I.. Balance laws. Int. J. Eng. Sci. 34(2), 125–145 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bennethum, L.S., Cushman, J.H.: Multiscale, hybrid mixture theory for swelling systems—II. Constitutive theory. Int. J. Eng. Sci. 34(2), 147–169 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Class, H., Helmig, R., Bastian, P.: Numerical simulation of nonisothermal multiphase multicomponent processes in porous media—1. An efficient solution technique. Adv. Water Resour. 25(5), 533–550 (2002)

    Article  Google Scholar 

  8. de Boer, R.: Theory of Porous Media. Springer, Berlin (2000)

    MATH  Google Scholar 

  9. Dobrowolsky, M., Vrettos, C.: Swell and shrink tests in modified oedometer apparatus. In: Tarantino, A., Romero, E., Cui, Y.J. (eds.) Advanced Experimental Unsaturated Soil Mechanics—Proceedings of an International Symposium, Trento, Italy, 27–29 June 2005, pp. 163–168. Taylor & Francis, London (2005)

    Google Scholar 

  10. Dobrowolsky, M., Vrettos, C.: Assessment of swelling deformation of unsaturated kaolinite Clay. In: Schanz, T. (ed.) Experimental Unsaturated Soil Mechanics, Springer Proceedings in Physics, vol. 112, pp. 285–291. Springer, Berlin (2007)

    Chapter  Google Scholar 

  11. Doherty, J.: PEST—Model-independent Parameter Estimation, User Manual, 5th edn. Watermark Numerical Computing, Brisbane (2004)

    Google Scholar 

  12. Ebigbo, A., Class, H., Helmig, R.: CO2 leakage through an abandoned well: problem-oriented benchmarks. Comput. Geosci. 11(2), 103–115 (2007)

    Article  MATH  Google Scholar 

  13. Ehlers, W.: Constitutive equations for granular materials in geomechanical context. In: Continuum Mechanics in Environmental Sciences and Geophysics, pp. 313–402. Wien, Berlin (1993)

    Google Scholar 

  14. Ehlers, W.: Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 3–86. Springer, Berlin (2002)

    Google Scholar 

  15. Ehlers, W., Ellsiepen, P.: PANDAS: Ein FE-System zur simulation von sonderproblemen der bodenmechanik. In: Wriggers, P., Meißner, U., Stein, E., Wunderlich, W. (eds.) Finite Elemente in der Baupraxis: Modellierung, Berechnung und Konstruktion. Beiträge zur Tagung FEM ’98 an der TU Darmstadt am 5. und 6. März 1998, pp. 391–400. Ernst & Sohn, Berlin (1998)

    Google Scholar 

  16. Eko, R.M.: Validation of an extended critical state model using the mechanical behaviour of an agricultural soil. Soil Tillage Res. 68, 1–16 (2002)

    Article  Google Scholar 

  17. Eringen, A.C.: A continuum theory of swelling porous elastic soils. Int. J. Eng. Sci. 32(8), 1337–1349 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hibbit, Karlsson & Sorenson: ABAQUS/standard benchmark manual. Hibbit, Karlsson & Sorenson, Pawtucket (2002)

    Google Scholar 

  19. Hibbit, Karlsson & Sorenson: ABAQUS/standard user’s manual. Hibbit, Karlsson & Sorenson, Pawtucket (2002)

    Google Scholar 

  20. International Association for the Properties of Water and Steam: Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam (IAPWS-97). International Association for the Properties of Water and Steam, Erlangen (2007)

    Google Scholar 

  21. Kolditz, O., Bauer, S., Beinhorn, M., De Jonge, J., Kalbacher, T., McDermott, C., Wang, W., Xie, M., Kaiser, R., Kohlmeier, M.: Rockflow—theory and users manual. Technical report, Groundwater Modeling Group, Center for Applied Geosciences, University of Tübingen, Institute of Fluid Mechanics, University of Hannover (2003)

  22. Kolditz, O., De Jonge, J.: Non-isothermal two-phase flow in low-permeable porous media. Comput. Mech. 33(5), 345–364 (2004)

    Article  MATH  Google Scholar 

  23. Kolditz, O., Kohlmeier, M., Thorenz, C., Shao, H.: Numerical modelling of moisture swelling in unsaturated porous media. Dev. Water Sci. 1, 1–8 (2002)

    Article  Google Scholar 

  24. Olivella, S., Gens, A.: Vapour transport in low permeability unsaturated soils with capillary effects. Transport Porous Med. 40(2), 219–241 (2000)

    Article  Google Scholar 

  25. Pruess, K., Bielinski, A., Ennis-King, J., Fabriol, R., Le Gallo, Y., Garcia, J., Jessen, K., Kovscek, T., Law, D.H.-S., Lichtner, P., Oldenburg, C., Pawar, R., Rutqvist, J., Steefel, C., Travis, B., Tsang, C.-F., White, S., Xu, T.: Code intercomparison builds confidence in numerical models for geologic disposal of CO2. In: Gale, J., Kaya, Y. (eds.) GHGT-6 Conference Proceedings: Greenhouse Gas Control Technologies, Kyoto, Japan, 1–4 October 2002, pp. 463–470. Pergamon, Oxford (2003)

    Chapter  Google Scholar 

  26. Robinet, J.C., Pakzad, M., Jullien, A., Plas, F.: A general modelling of expansive and non-expansive clays. Int. J. Numer. Anal. Methods Geomech. 23, 1319–1335 (1999)

    Article  MATH  Google Scholar 

  27. Rutqvist, J., Börgesson, L., Chijimatsu, M., Kobayashi, A., Jing, L., Nguyen, T.S., Noorishad, J., Tsang, C.F.: Thermohydromechanics of partially saturated geological media: governing equations and formulation of four finite element models. Int. J. Rock Mech. Min. Sci. 38(1), 105–127 (2001)

    Article  Google Scholar 

  28. Schrefler, B.A.: Multiphase flow in deforming porous material. Int. J. Num. Methods Eng. 60(1), 27–50 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Smith, J., Humphrey, J.: Interstitial transport and transvascular fluid exchange during infusion into brain and tumor tissue. Microvasc. Res. 73, 58–73 (2007)

    Article  Google Scholar 

  30. van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

    Google Scholar 

  31. Wendling, S.: Untersuchungen zur Entstehung von Austrocknungsrissen in mineralischen Deponieabdichtungen. Veröffentlichungen des Fachgebietes Bodenmechanik und Grundbau, Technische Universität Kaiserslautern. URN urn:nbn:de:hbz:386-kluedo-17844 (2004)

  32. Whitaker, S.: Flow in porous media III: Deformable media. Transport Porous Med. 1(2), 127–154 (1986)

    Article  Google Scholar 

  33. Xie, M.L., Wang, W.Q., De Jonge, J., Kolditz, O.: Numerical modelling of swelling pressure in unsaturated expansive elasto-plastic porous media. Transport Porous Med. 66(3), 311–339 (2007)

    Article  Google Scholar 

  34. Zhou, Y., Rowe, R.K.: Modeling of clay liner desiccation. Int. J. Geomech. 5(1), 1–9 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Class.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freiboth, S., Class, H., Helmig, R. et al. A model for multiphase flow and transport in porous media including a phenomenological approach to account for deformation—a model concept and its validation within a code intercomparison study. Comput Geosci 13, 281–300 (2009). https://doi.org/10.1007/s10596-008-9118-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-008-9118-6

Keywords

Navigation