Skip to main content
Log in

OpenMP and CUDA simulations of Sella Zerbino Dam break on unstructured grids

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

This paper presents two 2D dam break parallelized models based on shallow water equations (SWE) written in conservative form. The models were implemented exploiting multicore PC systems and graphics processor unit (GPU) architectures under the OpenMP and the NVIDIA™’s compute unified device architecture (CUDA) frameworks. The mathematical model is solved using a finite-volume technique on an unstructured grid, with Roe’s approximate Riemann solver, a first-order upwind scheme. The upwind treatment of the source terms is implemented. A technique to cope with a wetting-drying advance front is adopted, together with the inclusion of the influence of source terms in the stability constraint in order to prevent negative water depths at the dry fronts. The proposed model is first applied to a laboratory test and then to a real dam break that occurred in Italy in 1935. Results on different grid sizes are compared to show the computing efficiency between the original sequential model and the parallelized models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alcrudo, F., Garcia Navarro, P.: A high resolution Goudonov type scheme in finite volumes for two dimensional shallow water equations . Int. J. Numer. Methods Fluids 16, 489–585 (1993)

    Article  Google Scholar 

  2. Asouti, V.G., Trompoukis, X.S., Kampolis, I.C., Giannakoglou, K.C.: Unsteady CFD computations using vertex-centered finite volumes for unstructured grids on graphics processing units. Int. J. Numer. Methods Fluids 67, 232–246 (2011)

    Article  Google Scholar 

  3. Bermudez, A., Vasquez Cendon, M.: Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23, 1049–1071 (1994)

    Article  Google Scholar 

  4. Castellarin, A., Di Baldassarre, G., Bates, P.D., Brath, A.: Optimal cross sectional spacing in Preissmann scheme mono dimensional hydrodynamic models. J. Hydraul. Eng.-ASCE 135, 96–105 (2009)

    Article  Google Scholar 

  5. Crespo, A.C., Dominguez, J.M., Barreiro, A., Gomez-Gesteira, M., Rogers, B.D.: GPUS, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle hydrodynamics methods. PLoS ONE 6(6), e20685 (2011)

    Article  Google Scholar 

  6. Bermúdez, A., Dervieux, A., Desideri, J.A., Vázquez, M.E.: Upwind schemes for the two dimensional shallow water equations with variable depth using unstructured meshes. Comput. Methods Appl. Mech. Eng. 155(1-2), 49–72 (1998)

    Article  Google Scholar 

  7. Begnudelli, L., Sanders, B.F.: Simulation of the St. Francis Dam-break flood. J. Eng. Mech. 133(11), 1200–1212 (2007)

    Article  Google Scholar 

  8. Brodtkorb, A.R., Sætra, M.L., Altinakar, M.: Efficient shallow water simulations on GPUs: implementation, visualization, verification, and validation. Comput. Fluids 55, 1–12 (2012)

    Article  Google Scholar 

  9. Castro, M., Ortega, S., De La Asunción, M., Mantas, J., Gallardo, J.M.: GPU Computing for shallow water flow simulation based on finite volume schemes. C. R. Mecanique 339, 165–184 (2011)

    Article  Google Scholar 

  10. Cheng, M., Wang, G., Mian, H.H.: Reordering of hybrid unstructured grids for an implicit Navier-Stokes solver based on openMP parallelization. Comput. Fluids 110, 245–253 (2015)

    Article  Google Scholar 

  11. Costabile, P., Macchione, F., Natale, L., Petaccia, G.: Flood mapping using LIDAR DEM. Limitations of the 1-D modeling highlighted by the 2-D approach. Nat. Hazards 77(2), 181–204 (2015)

    Article  Google Scholar 

  12. Costabile, P., Macchione, F., Natale, L., Petaccia, G.: Comparison of scenarios with and without bridges and analysis of backwater effect in 1-D and 2-D river flood modeling. CMES - Computer Modeling in Engineering and Sciences 109(2), 81–103 (2015)

    Google Scholar 

  13. Crespo, A.J., Domínguez, J.M., Rogers, B.D., Gómez-Gesteira M., Longshaw, S., Canelas, R., Vacondio, R., Barreiro, A., García-Feal, O.: DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput. Phys. Commun. 187, 204–216 (2015)

    Article  Google Scholar 

  14. De La Asunción, M., Mantas, J.M., Castro, M.J.: Simulation of one-layer shallow water systems on multicore and CUDA architectures. J. Supercomput. 58, 206–214 (2011)

    Article  Google Scholar 

  15. De la Asunción, M., Mantas, J.M., Castro, M., Fernández-Nieto, E.: An MPI-CUDA implementation of an improved Roe method for two-layer shallow water systems. J. Parallel Distrib. Comput. 72, 1065–1072 (2012)

    Article  Google Scholar 

  16. Garcia-Navarro, P., Fras, A., Villanueva, I.: Dam-break flow simulation: some results for one-dimensional models of real cases. J. Hydrol. 216(3-4), 227–247 (1999)

    Article  Google Scholar 

  17. Guo, X., Lange, M., Gorman, G., Mitchell, L., Weiland, M.: Developing a scalable hybrid MPI/OpenMP unstructured finite element model. Comput. Fluids 110, 227–234 (2015)

    Article  Google Scholar 

  18. Herault, A., Bilotta, G., Dayrymple, R.A.: SPH on GPU with CUDA. J. Hydraul. Res. 48, 74–79 (2010)

    Article  Google Scholar 

  19. IMPACT: EC Contract EVG1-CT-2001-00037: Investigation of extreme flood processes and uncertainties. http://www.impact-project.net. Accessed 10 June 2015 (2004)

  20. Kuiry, S., Sen, D., Bates, P.: Coupled mono dimensionalquasi two dimensional flood inundation model with unstructured grids. J. Hydraul. Eng.-ASCE 136, 493–506 (2010)

    Article  Google Scholar 

  21. Lacasta, A., Morales-Hernández, M., Murillo, J., García-navarro P.: An optimized GPU implementation of a two dimensional free surface simulation model on unstructured meshes. Adv. Eng. Softw. 78, 1–15 (2014)

    Article  Google Scholar 

  22. Lacasta, A., Juez, C., Murillo, J., García-Navarro P.: An efficient solution for hazardous geophysical flows simulation using GPUs. Comput. Geosci. 78, 63–72 (2015)

    Article  Google Scholar 

  23. Lastra, M., Mantas, J., Urena, C., Castro, M., García-rodríguez, J.A.: Simulation of shallow-water systems using graphics processing units. Math. Comput. Simul. 80, 598–618 (2009)

    Article  Google Scholar 

  24. Liggett, J.A.: Basic Equations of Unsteady Flow. In: Unsteady Flow in Open Channel. Water Resources Publications, Fort Collins, Vol. 1, Mahmood and V. Yevjevich (1975)

  25. Morales-Hernandez, M., Petaccia, G., Brufau, P., Garcia Navarro, P.: Conservative 1D-2D coupled numerical strategies applied to river flooding: the Tiber (Rome). Appl. Math. Model. 40(3), 2087–2105 (2016)

    Article  Google Scholar 

  26. Murillo, J., Garcia Navarro, P., Burguete, J., Brufau, P.: A conservative two dimensional model of inundation flow with solute transport over dry bed. Int. J. Numer. Methods Fluids 52, 1059–1092 (2006)

    Article  Google Scholar 

  27. Murillo, J., Garcia Navarro, P., Burguete, J.: Time step restrictions for well-balanced shallow water solutions in non zero velocity steady state International. Int. J. Numer. Methods Fluids 6, 1351–1377 (2009)

    Article  Google Scholar 

  28. Natale, L., Petaccia, G.: Design flood estimation: lessons learnt from Sella Zerbino dam-break Italian. J. Eng. Geol. Environ. 6, 437–443 (2013)

    Google Scholar 

  29. Petaccia, G., Soares-Frazão, S., Savi, F., Natale, L., Zech, Y.: Simplified versus detailed two dimensional approaches to transient flow modelling in urban areas. J. Hydraul. Eng. 136(4), 262–266 (2010)

    Article  Google Scholar 

  30. Petaccia, G., Fenocchi, A.: Experimental assessment of the stage-discharge relationship of the Heyn siphons of Bric Zerbino. Dam. Flow Meas. Instrum. 41, 36–40 (2015)

    Article  Google Scholar 

  31. Petaccia, G., Natale, L., Savi, F., Velickovic, M., Zech, Y., Soares-Frazão, S.: Flood wave propagation in steep mountain rivers. J. Hydroinf. 15(1), 120–137 (2013)

    Article  Google Scholar 

  32. Pilotti, M., Maranzoni, A., Tomirotti, M., Valerio, G.: Gleno Dam break: case study and numerical modeling. J. Hydraul. Eng. 137(4), 480–492 (2011)

    Article  Google Scholar 

  33. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  Google Scholar 

  34. Soares-Frazão, S., Zech, Y.: Dam-break flow through an idealized city. J. Hydraul. Res. 46(5), 648–658 (2008)

    Article  Google Scholar 

  35. Sanders, B., Schubert, J., Detwiler, R.: Parbrezo: A parallel, unstructured grid, Godunov-type, shallow water code for high resolution flood inundation modeling at the regional scale. Adv. Water Resour. 33, 1456–1467 (2010)

    Article  Google Scholar 

  36. Smith, L.S., Liang, Q.: Towards a generalised GPU/CPU shallow-flow modelling tool. Comput. Fluids 88, 334–343 (2013)

    Article  Google Scholar 

  37. Toro, E.F.: Shock capturing methods for free surface shallow water flows. Wiley, New York (1999)

    Google Scholar 

  38. Toro, E.: Reimann Solvers and Numerical Methods for Fluid Dynamics: a Practical Introduction Springer (2009)

  39. Vacondio, R., Dal Palù, A., Mignosa, P.: GPU-enhanced finite volume shallow water solver for fast flood simulations. Environ. Model Softw. 57, 60–75 (2014)

    Article  Google Scholar 

  40. Wu, J., Zhang, H., Yang, R., Dalrymple, R.A., Hérault, A.: Numerical modeling of dam-break flood through intricate city layouts including underground spaces using GPU-based SPH method. J. Hydrodyn. 25, 818–828 (2013)

    Article  Google Scholar 

  41. NVIDIA’s next generation CUDA compute architecture: Kepler GK110. Whitepaper available online

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Petaccia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petaccia, G., Leporati, F. & Torti, E. OpenMP and CUDA simulations of Sella Zerbino Dam break on unstructured grids. Comput Geosci 20, 1123–1132 (2016). https://doi.org/10.1007/s10596-016-9580-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-016-9580-5

Keywords

Navigation