Skip to main content

Advertisement

Log in

Physics-informed machine learning for backbone identification in discrete fracture networks

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The phenomenon of flow-channeling, or the existence of preferential pathways for flow in fracture networks, is well known. Identification of the channels (“backbone”) allows for system reduction and computational efficiency in simulation of flow and transport through fracture networks. However, the purpose of machine learning techniques for backbone identification in fractured media is two-pronged system reduction for computational efficiency in simulation of flow and transport as well as physical insight into the phenomenon of flow channeling. The most critical aspect of this problem is the need to have a truly “physics-informed” technique that respects the constraint of connectivity. We present a method that views a network as a union of connected paths with each path comprising a sequence of fractures. Thus, the fundamental unit of selection becomes a sequence of fractures, classified based on attributes that characterize the sequence. In summary, this method represents a parametrization of the sample space that ensures every selected sample sub-network (which is the union of all selected sequences of fractures) always respects the constraint of connectivity, demonstrating that it is a truly physics-informed method. The algorithm has a user-defined parameter which allows control of the backbone size when using the random forest or logistic regression classifier. Even when the backbones are less than 30% in size (leading to computational savings), the backbones still capture the behavior of the breakthrough curve of the full network. Moreover, there is no need to check for path connectedness in the backbones unlike previous methods since the backbones are guaranteed to be connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P., Berkowitz, B.: Scaling of fracture systems in geological media. Rev. Geophys. 39(3), 347 (2001)

    Article  Google Scholar 

  2. Hyman, J., Jiménez-Martínez, J., Viswanathan, H., Carey, J., Porter, M., Rougier, E., Karra, S., Kang, Q., Frash, L., Chen, L., Lei, Z., O’Malley, D., Makedonska, N.: Understanding hydraulic fracturing: a multi-scale problem. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 374(2078), 20150426 (2016)

    Article  Google Scholar 

  3. Karra, S., Makedonska, N., Viswanathan, H.S., Painter, S.L., Hyman, J.D.: Effect of advective flow in fractures and matrix diffusion on natural gas production,. Water Resour. Res. 51(10), 8646 (2015)

    Article  Google Scholar 

  4. Middleton, R., Carey, J., Currier, R., Hyman, J., Kang, Q., Karra, S., Jiménez-Martínez, J., Porter, M., Viswanathan, H.: Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2. Appl. Energy 147, 500 (2015)

    Article  Google Scholar 

  5. National Research Council: Rock fractures and fluid flow: contemporary understanding and applications. National Academy Press (1996)

  6. Neuman, S.: Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol. J. 13(1), 124 (2005)

    Article  Google Scholar 

  7. VanderKwaak, J., Sudicky, E.: Dissolution of non-aqueous-phase liquids and aqueous-phase contaminant transport in discretely-fractured porous media. J. Contam. Hydrol. 23(1-2), 45 (1996)

    Article  Google Scholar 

  8. Jenkins, C., Chadwick, A., Hovorka, S.D.: The state of the art in monitoring and verification—ten years on. Int. J. Greenh. Gas Control 40, 312 (2015)

    Article  Google Scholar 

  9. Kueper, B.H., McWhorter, D.B.: The behavior of dense, nonaqueous phase liquids in fractured clay and rock. Ground Water 29(5), 716 (1991)

    Article  Google Scholar 

  10. Ng, L.W.T., Willcox, K.E.: Multifidelity approaches for optimization under uncertainty. Int. J. Numer. Methods Eng. 100, 746 (2014). https://doi.org/10.1002/nme.4761

    Article  Google Scholar 

  11. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56, 607 (2008). https://doi.org/10.1287/opre.1070.0496

    Article  Google Scholar 

  12. Berrone, S., Canuto, C., Pieraccini, S., Scialò, S.: Uncertainty quantification in discrete fracture network models: Stochastic geometry . Water Resour. Res. 54, 1338 (2018). https://doi.org/10.1002/2017wr021163

    Article  Google Scholar 

  13. O’Malley, D., Karra, S., Hyman, J.D., Viswanathan, H.S., Srinivasan, G.: Efficient Monte Carlo with graph-based subsurface flow and transport models. Water Resour. Res. 54, 3758 (2018). https://doi.org/10.1029/2017wr022073

    Article  Google Scholar 

  14. Jackson, C.P., Hoch, A.R., Todman, S.: Self-consistency of a heterogeneous continuum porous medium representation of a fractured medium. Water Resour. Res. 36, 189 (2000). https://doi.org/10.1029/1999wr900249

    Article  Google Scholar 

  15. Painter, S., Cvetkovic, V.: Upscaling discrete fracture network simulations: an alternative to continuum transport models. Water Resources Research 41(2) (2005)

  16. Karimi-Fard, M., Gong, B., Durlofsky, L.J.: Generation of coarse-scale continuum flow models from detailed fracture characterizations. Water Resources Research 42. https://doi.org/10.1029/2006wr005015(2006)

  17. Botros, F.E., Hassan, A.E., Reeves, D.M., Pohll, G.: On mapping fracture networks onto continuum. Water Resources Research 44. https://doi.org/10.1029/2007wr006092 (2008)

  18. Tsang, C.F., Neretnieks, I.: Flow channeling in heterogeneous fractured rocks. Rev. Geophys. 36(2), 275 (1998)

    Article  Google Scholar 

  19. Abelin, H., Birgersson, L., Moreno, L., Widén, H., Ågren, T., Neretnieks, I.: A large-scale flow and tracer experiment in granite: 2. Results and interpretation. Water Resour. Res. 27(12), 3119 (1991)

    Article  Google Scholar 

  20. Abelin, H., Neretnieks, I., Tunbrant, S., Moreno, L.: Final report of the migration in a single fracture: experimental results and evaluation. Tech. Rep SKB-SP-TR–85-03 (1985)

  21. Hyman, J.D., Painter, S.L., Viswanathan, H., Makedonska, N., Karra, S.: Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks. Water Resour. Res. 51(9), 7289 (2015)

    Article  Google Scholar 

  22. Frampton, A., Cvetkovic, V.: Numerical and analytical modeling of advective travel times in realistic three-dimensional fracture networks. Water Resources Research 47(2) (2011)

  23. de Dreuzy, J.R., Davy, P., Bour, O.: Hydraulic properties of two-dimensional random fracture networks following a power law length distribution 2. Permeability of networks based on lognormal distribution of apertures. Water Resour. Res. 37(8), 2079 (2001)

    Article  Google Scholar 

  24. de Dreuzy, J.R., Méheust, Y., Pichot, G.: Influence of fracture scale heterogeneity on the flow properties of three-dimensional discrete fracture networks. Journal of Geophysical Research-Solid Earth 117 (B11) (2012)

  25. Hyman, J., Aldrich, G., Viswanathan, H., Makedonska, N., Karra, S.: Fracture size and transmissivity correlations: implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size. Water Resour. Res. 52(8), 6472 (2016)

    Article  Google Scholar 

  26. Hyman, J.D., Hagberg, A., Srinivasan, G., Mohd-Yusof, J., Viswanathan, H.: Predictions of first passage times in sparse discrete fracture networks using graph-based reductions. Phys. Rev. E 96(1), 013304 (2017)

    Article  Google Scholar 

  27. Ghaffari, H., Nasseri, M., Young, R.: Fluid flow complexity in fracture networks: analysis with graph theory and lbm. arXiv:1107.4918 (2011)

  28. Andresen, C.A., Hansen, A., Le Goc, R., Davy, P., Hope, S.M.: Topology of fracture networks. Frontiers in physics 1 art (2013)

  29. Santiago, E., Velasco-Hernández, J.X., Romero-salcedo, M.: A methodology for the characterization of flow conductivity through the identification of communities in samples of fractured rocks,. Expert Syst. Appl. 41(3), 811 (2014). https://doi.org/10.1016/j.eswa.2013.08.011

    Article  Google Scholar 

  30. Sævik, P.N., Nixon, C.W.: Inclusion of topological measurements into analytic estimates of effective permeability in fractured media. Water Resour. Res. 53(11), 9424 (2017). https://doi.org/10.1002/2017WR020943

    Article  Google Scholar 

  31. Hope, S.M., Davy, P., Maillot, J., Le Goc, R., Hansen, A.: Topological impact of constrained fracture growth. Front. Phys. 3, 75 (2015)

    Google Scholar 

  32. Hyman, J.D., Jiménez-Martínez, J.: Dispersion and mixing in three-dimensional fracture networks: nonlinear interplay between structural and hydraulic heterogeneity. Water Resources Research. https://doi.org/10.1029/2018WR022585 (2018)

  33. Huseby, O., Thovert, J.F., Adler, P.M.: Geometry and topology of fracture systems. J. Phys. A Math. Gen. 30, 1415 (1997). https://doi.org/10.1088/0305-4470/30/5/012

    Article  Google Scholar 

  34. Aldrich, G., Hyman, J.D., Karra, S., Gable, C.W., Makedonska, N., Viswanathan, H., Woodring, J., Hamann, B.: Analysis and visualization of discrete fracture networks using a flow topology graph. IEEE Trans. Vis. Comput. Graph. 23(8), 1896 (2017). https://doi.org/10.1109/tvcg.2016.2582174

    Article  Google Scholar 

  35. Karra, S., O’Malley, D., Hyman, J., Viswanathan, H., Srinivasan, G.: Modeling flow and transport in fracture networks using graphs. Phys. Rev. E 97(3), 033304 (2018). https://doi.org/10.1103/PhysRevE.97.033304

    Article  Google Scholar 

  36. Viswanathan, H.S., Hyman, J.D., Karra, S., O’Malley, D., Srinivasan, S., Hagberg, A., Srinivasan, G.: Advancing graph-based algorithms for predicting flow and transport in fractured rock. Water Resources Research. https://doi.org/10.1029/2017WR022368 (2018)

  37. Hyman, J.D., Hagberg, A., Osthus, D., Srinivasan, S., Srinivasan, G., Viswanathan, H.S.: Identifying backbones in three dimensional discrete fracture networks: a graph-based multi-scale approach. Multiscale Modeling Sim. 16(4), 5477 (2018)

    Google Scholar 

  38. Dershowitz, W., Fidelibus, C.: Derivation of equivalent pipe network analogues for three-dimensional discrete fracture net works by the boundary element method. Water Resour. Res. 35(9), 2685 (1999)

    Article  Google Scholar 

  39. Cacas, M.C., Ledoux, E., Marsily, G.D., Tillie, B., Barbreau, A., Durand, E., Feuga, B., Peaudecerf, P.: Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. the flow model. Water Resour. Res. 26(3), 479 (1990)

    Google Scholar 

  40. Srinivasan, G., Hyman, J.D., Osthus, D., Moore, B., O’Malley, D., Karra, S., Rougier, E., Hagberg, A., Hunter, A., Viswanathan, H.: Quantifying topological uncertainty in fractured systems using graph theory and machine learning. Nature Scientific Reports 8 (11665) (2018)

  41. Srinivasan, S., Hyman, J., Karra, S., O’Malley, D., Viswanathan, H., Srinivasan, G.: Robust system size reduction of discrete fracture networks: a multi-fidelity method that preserves transport characteristics. Computational Geosciences. https://doi.org/10.1007/s10596-018-9770-4 (2018)

  42. Bergen, K.J., Johnson, P.A., de Hoop, M.V., Beroza, G.C.: Machine learning for data-driven discovery in solid earth geoscience. Science 363, 6433 (2019). https://doi.org/10.1126/science.aau0323

    Article  Google Scholar 

  43. Karpatne, A., Ebert-Uphoff, I., Ravela, S., Babaie, H.A., Kumar, V.: Machine learning for the geosciences: challenges and opportunities. IEEE Transactions on Knowledge and Data Engineering. p. 1. https://doi.org/10.1109/TKDE.2018.2861006 (2018)

  44. Zhang, L., Zhang, L., Du, B.: Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine 4(2), 22 (2016)

    Article  Google Scholar 

  45. Cracknell, M.J., Reading, A.M.: Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 63, 22 (2014)

    Article  Google Scholar 

  46. National Oceanic and Atmospheric Administration: National Centers for Environmental Information. www.ncdc.noaa.gov (2018)

  47. World Climate Research Program: Coupled model intercomparison Project. http://cmip-pcmdi.llnl.gov (2018)

  48. Scavuzzo, J.M., Trucco, F., Espinosa, M., Tauro, C.B., Abril, M., Scavuzzo, C.M., Frery, A.C.: Modeling dengue vector population using remotely sensed data and machine learning. Acta Trop. 185, 167 (2018)

    Article  Google Scholar 

  49. Hengl, T., de Jesus, J.M., Heuvelink, G.B., Gonzalez, M.R., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B., et al.: Soilgrids250m: global gridded soil information based on machine learning. PLOS One 12(2), E0169748 (2017)

    Article  Google Scholar 

  50. Dev, S., Wen, B., Lee, Y.H., Winkler, S.: Ground-based image analysis: a tutorial on machine-learning techniques and applications. IEEE Geoscience and Remote Sensing Magazine 4(2), 79 (2016)

    Article  Google Scholar 

  51. Zhang, Z.: When doctors meet with alphago: potential application of machine learning to clinical medicine. Ann. Transl. Med. 4, 125 (2016). https://doi.org/10.21037/atm.2016.03.25

    Article  Google Scholar 

  52. Lary, D.J., Alavi, A.H., Gandomi, A.H., Walker, A.L.: Machine learning in geosciences and remote sensing. Geosci. Front. 7(1), 3 (2016)

    Article  Google Scholar 

  53. Griewank, A., Reich, S., Roulstone, I., Stuart, A.M.: Mathematical and algorithmic aspects of data assimilation in the geosciences. Oberwolfach Reports 13(4), 2705 (2017)

    Article  Google Scholar 

  54. Ravela, S.: A Symbiotic Framework for coupling Machine Learning and Geosciences in Prediction and Predictability. In: AGU Fall Meeting Abstracts (2017)

  55. Dell’Aversana, P., Ciurlo, B., Colombo, S.: Integrated Geophysics and Machine Learning for Risk Mitigation in Exploration Geosciences. In: 80Th EAGE Conference and Exhibition 2018 (2018)

  56. Karpatne, A., Atluri, G., Faghmous, J.H., Steinbach, M., Banerjee, A., Ganguly, A., Shekhar, S., Samatova, N., Kumar, V.: Theory-guided data science: a new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 29(10), 2318 (2017). https://doi.org/10.1109/TKDE.2017.2720168

    Article  Google Scholar 

  57. Pan, S., Duraisamy, K.: Data-driven discovery of closure models. SIAM J. Appl. Dyn. Syst. 17(4), 2381 (2018)

    Article  Google Scholar 

  58. Valera, M., Guo, Z., Kelly, P., Matz, S., Cantu, V.A., Percus, A.G., Hyman, J.D., Srinivasan, G., Viswanathan, H.S: Machine learning for graph-based representations of three-dimensional discrete fracture networks. Comput. Geosci. 22, 695 (2018). https://doi.org/10.1007/s10596-018-9720-1

    Article  Google Scholar 

  59. Srinivasan, S., Karra, S., Hyman, J., Viswanathan, H., Srinivasan, G.: Model reduction for fractured porous media: a machine learning approach for identifying main flow pathways. Computational Geosciences (2018)

  60. Hyman, J.D., Karra, S., Makedonska, N., Gable, C.W., Painter, S.L., Viswanathan, H.S.: dfnworks: A discrete fracture network framework for modeling subsurface flow and transport. Comput. Geosci. 84, 10 (2015)

    Article  Google Scholar 

  61. Hyman, J.D., Gable, C.W., Painter, S.L., Makedonska, N.: Conforming delaunay triangulation of stochastically generated three dimensional discrete fracture networks: a feature rejection algorithm for meshing strategy. SIAM J. Sci. Comput. 36(4), A1871 (2014)

    Article  Google Scholar 

  62. LaGriT: Los Alamos Grid Toolbox, (LaGriT). http://lagrit.lanl.gov (2013). Last Checked : May 20, 2019

  63. Lichtner, P., Hammond, G., Lu, C., Karra, S., Bisht, G., Andre, B., Mills, R., Kumar, J.: PFLOTRAN user manual: a massively parallel reactive flow and transport model for describing surface and subsurface processes. Tech. rep. (Report No.: LA-UR-15-20403) Los Alamos National Laboratory. https://doi.org/10.2172/1168703 (2015)

  64. Makedonska, N., Painter, S.L., Bui, Q.M., Gable, C.W., Karra, S.: Particle tracking approach for transport in three-dimensional discrete fracture networks. Comput. Geosci. 19(5), 1123 (2015)

    Article  Google Scholar 

  65. Painter, S.L., Gable, C.W., Kelkar, S.: Pathline tracing on fully unstructured control-volume grids. Comput. Geosci. 16(4), 1125 (2012)

    Article  Google Scholar 

  66. SKB: Long-term Safety for the Final Repository for Spent Nuclear Fuel at Forsmark. Tech. Rep, SKB TR-11-01. Swedish Nuclear Fuel and Waste Management Co., Stockholm (2011)

    Google Scholar 

  67. Alemanni, A., Battaglia, M., Bigi, S., Borisova, E., Campana, A., Loizzo, M., Lombardi, S.: A three dimensional representation of the fracture network of a co2 reservoir analogue (Latera Caldera, Central Italy). Energy Procedia 4, 3582 (2011). https://doi.org/10.1016/j.egypro.2011.02.287

    Article  Google Scholar 

  68. Boussinesq, J.: Mémoire sur l’in uence des frottements dans les mouvements réguliers des fluids. J. Math. Pures. Appl. 13(377–424), 21 (1868)

    Google Scholar 

  69. Sherman, T., Hyman, J.D., Bolster, D., Makedonska, N., Srinivasan, G.: Characterizing the impact of particle behavior at fracture intersections in three-dimensional discrete fracture networks. Phys. Rev. E. 99, 013110 (2019)

    Article  Google Scholar 

  70. Yen, J.Y.: Finding the k shortest loopless paths in a network. Manag. Sci. 17(11), 712 (1971)

    Article  Google Scholar 

  71. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163 (2001)

    Article  Google Scholar 

  72. Hagberg, A.A., Schult, D.A., Swart, P.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conferences (SciPy 2008), pp. 11–15 (2008)

  73. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825 (2011)

    Google Scholar 

  74. Hosmer, D.W. Jr, Lemeshow, S., Sturdivant, R.X.: Applied logistic regression. vol. 398, Wiley (2013)

  75. Cutler, A., Cutler, D.R., Stevens, J.R.: Random Forests. In: Ensemble machine learning, pp. 157–175. Springer (2012)

  76. Grindrod, P., Impey, M.: Channeling and Fickian dispersion in fractal simulated porous media. Water Resour. Res. 29(12), 4077 (1993)

    Article  Google Scholar 

  77. Ouillon, G., Castaing, C., Sornette, D.: Hierarchical geometry of faulting. J. Geophys. Res. 101(B3), 5477 (1996)

    Article  Google Scholar 

Download references

Funding

Los Alamos National Laboratory (US) LDRD #20170103DR: All authors Los Alamos National Laboratory (US) LDRD #20180621ECR: JDH Department of Energy (DOE) Basic Energy Sciences program DE-AC52-06NA25396: SS, JDH, HV Los Alamos National Laboratory (US) LDRD #20170508DR: SS NSF Grant No. DGE-1745038: EC

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shriram Srinivasan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, S., Cawi, E., Hyman, J. et al. Physics-informed machine learning for backbone identification in discrete fracture networks. Comput Geosci 24, 1429–1444 (2020). https://doi.org/10.1007/s10596-020-09962-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-020-09962-5

Keywords

Navigation