Skip to main content
Log in

Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Metal oxide nanoparticles have been suggested as good candidates for the development of antibacterial agents. Cerium oxide (CeO2) and iron oxide (Fe2O3) nanoparticles have been utilized in a number of biomedical applications. Here, the antibacterial activity of CeO2 and Fe2O3 nanoparticles were evaluated on a panel of gram positive and gram negative bacteria in both the planktonic and biofilm cultures. Additionally, the effect of combining CeO2 and Fe2O3 nanoparticles with the broad spectrum antibiotic ciprofloxacin on tested bacteria was investigated. Thus, minimum inhibitory concentrations (MICs) of CeO2 and Fe2O3 nanoparticles that are required to inhibit bacterial planktonic growth and bacterial biofilm, were evaluated, and were compared to the MICs of the broad spectrum antibiotic ciprofloxacin alone or in the presence of CeO2 and Fe2O3 nanoparticles. Results of this study show that both CeO2 and Fe2O3 nanoparticles fail to inhibit bacterial growth and biofilm biomass for all the bacterial strains tested. Moreover, adding CeO2 or Fe2O3 nanoparticles to the broad spectrum antibiotic ciprofloxacin almost abolished its antibacterial activity. Results of this study suggest that CeO2 and Fe2O3 nanoparticles are not good candidates as antibacterial agents, and they could interfere with the activity of important antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aljarrah K, Mhaidat NM, Al-Akhras MA, Aldaher AN, Albiss B, Aledealat K, Alsheyab FM (2012) Magnetic nanoparticles sensitize MCF-7 breast cancer cells to doxorubicin-induced apoptosis. World J Surg Oncol 10:62. doi:10.1186/1477-7819-10-62

    Article  Google Scholar 

  • Applerot G, Lellouche J, Perkas N, Nitzan Y, Gedanken A, Banin E (2012) ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv 2:2314–2321

    Article  CAS  Google Scholar 

  • Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212:474–482. doi:10.1006/jcis.1998.6053jcis.1998.6053

    Article  CAS  Google Scholar 

  • Cernohorska L, Votava M (2008) Antibiotic synergy against biofilm-forming Pseudomonas aeruginosa. Folia Microbiol (Praha) 53:57–60. doi:10.1007/s12223-008-0008-z-&gt

    Article  CAS  Google Scholar 

  • Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29:487–496. doi:10.1016/j.biomaterials.2007.08.050

    Article  CAS  Google Scholar 

  • Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006

    CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI) (2012) Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically, 9th ed. Approved standard, Villanova, PA

  • Cohen ML (2000) Changing patterns of infectious disease. Nature 406:762–767. doi:10.1038/35021206

    Article  CAS  Google Scholar 

  • Deshpande S, Patil S, Kuchibhatla S, Seal S (2005) Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett 87:1–3

    Article  Google Scholar 

  • Donadio S, Maffioli S, Monciardini P, Sosio M, Jabes D (2010) Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot (Tokyo) 63:423–430. doi:10.1038/ja.2010.62

    Article  CAS  Google Scholar 

  • Drlica K, Zhao X (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61:377–392

    CAS  Google Scholar 

  • Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40. doi:10.1016/j.tim.2004.11.010

    Article  CAS  Google Scholar 

  • Gokulakrishnan R, Ravikumar S, Raj JA (2012) In vitro antibacterial potential of metal oxide nanoparticles against antibiotic resistant bacterial pathogens. the. Asian Pac J Trop Dis 2:411–413

    Article  CAS  Google Scholar 

  • Gonzales-Weimuller M, Zeisberger M, Krishnan K (2009) Size-dependent heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Mag Mat 321:1947–1950

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021. doi:10.1016/j.biomaterials.2004.10.012

    Article  CAS  Google Scholar 

  • He S, Feng Y, Gu N, Zhang Y, Lin X (2011) The effect of gamma-Fe2O3 nanoparticles on Escherichia coli genome. Environ Pollut 159:3468–3473. doi:10.1016/j.envpol.2011.08.024

    Article  CAS  Google Scholar 

  • Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24:4140–4144. doi:10.1021/la7035949

    Article  CAS  Google Scholar 

  • Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145. doi:10.1016/j.jconrel.2011.07.002

    Article  CAS  Google Scholar 

  • Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14:21266–21305. doi:10.3390/ijms141121266

    Article  CAS  Google Scholar 

  • Khandhar AP, Ferguson RM, Simon JA, Krishnan KM (2012) Enhancing cancer therapeutics using size-optimized magnetic fluid hyperthermia. J Appl Phys 111:7B306–307B3063

    Article  Google Scholar 

  • Kuang Y, He X, Zhang Z, Li Y, Zhang H, Ma Y, Wu Z, Chai Z (2011) Comparison study on the antibacterial activity of nano- or bulk-cerium oxide. J Nanosci Nanotechnol 11:4103–4108

    Article  CAS  Google Scholar 

  • Kurek A, Grudniak AM, Kraczkiewicz-Dowjat A, Wolska KI (2011) New antibacterial therapeutics and strategies. Pol J Microbiol 60:3–12

    CAS  Google Scholar 

  • Lode H (2001) Evidence of different profiles of side effects and drug-drug interactions among the quinolones–the pharmacokinetic standpoint. Chemotherapy 47:24–31; discussion 44–28

    Google Scholar 

  • Masadeh MM, Mhaidat NM, Alzoubi KH, Hussein EI, Al-Trad EI (2013) In vitro determination of the antibiotic susceptibility of biofilm-forming Pseudomonas aeruginosa and Staphylococcus aureus: possible role of proteolytic activity and membrane lipopolysaccharide. Infect Drug Resist 6:27–32. doi:10.2147/IDR.S41501idr-6-027

    Article  CAS  Google Scholar 

  • Negahdary M, Mohseni G, Fazilati M, Parsania S, Rahimi G, Rad S, Rezaei-Zarchi S (2012) The Antibacterial effect of cerium oxide nanoparticles on Staphylococcus aureus bacteria. Ann Biol Res 3:3671–3678

    CAS  Google Scholar 

  • Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557. doi:10.1038/nmat2442

    Article  CAS  Google Scholar 

  • Niu J, Azfer A, Rogers LM, Wang X, Kolattukudy PE (2007) Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res 73:549–559. doi:10.1016/j.cardiores.2006.11.031

    Article  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720. doi:10.1128/AEM.02218-06

    Article  CAS  Google Scholar 

  • Pareta RA, Taylor E, Webster TJ (2008) Increased osteoblast density in the presence of novel calcium phosphate coated magnetic nanoparticles. Nanotechnology 19:265101. doi:10.1088/0957-4484/19/26/265101

    Article  Google Scholar 

  • Pelletier DA, Suresh AK, Holton GA, McKeown CK, Wang W, Gu B, Mortensen NP, Allison DP, Joy DC, Allison MR, Brown SD, Phelps TJ, Doktycz MJ (2010) Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol 76:7981–7989. doi:10.1128/AEM.00650-10

    Article  CAS  Google Scholar 

  • Perez JM, Asati A, Nath S, Kaittanis C (2008) Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small 4:552–556. doi:10.1002/smll.200700824

    Article  CAS  Google Scholar 

  • Ravikumar S, Gokulakrishnan R, Selvanathan K, Selvam S (2011) Antibacterial activity of metal oxide nanoparticles against ophthalmic pathogens. Int J Pharm Res Dev 3:122–127

    Google Scholar 

  • Rispoli F, Angelov A, Badia D, Kumar A, Seal S, Shah V (2010) Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli. J Hazard Mater 180:212–216. doi:10.1016/j.jhazmat.2010.04.016

    Article  CAS  Google Scholar 

  • Shah V, Shah S, Shah H, Rispoli FJ, McDonnell KT, Workeneh S, Karakoti A, Kumar A, Seal S (2012) Antibacterial activity of polymer coated cerium oxide nanoparticles. PLoS One 7:e47827. doi:10.1371/journal.pone.0047827PONE-D-12-17889

    Article  CAS  Google Scholar 

  • Subbiahdoss G, Sharifi S, Grijpma DW, Laurent S, van der Mei HC, Mahmoudi M, Busscher HJ (2012) Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci. Acta Biomater 8:2047–2055. doi:10.1016/j.actbio.2012.03.002

    Article  CAS  Google Scholar 

  • Tarnuzzer RW, Colon J, Patil S, Seal S (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5:2573–2577. doi:10.1021/nl052024f

    Article  CAS  Google Scholar 

  • Taylor EN, Webster TJ (2009) The use of superparamagnetic nanoparticles for prosthetic biofilm prevention. Int J Nanomedicine 4:145–152

    Article  CAS  Google Scholar 

  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156

    Article  CAS  Google Scholar 

  • Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ (2010) Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomedicine 5:277–283

    CAS  Google Scholar 

  • Wang Q, Webster TJ (2013) Short communication: inhibiting biofilm formation on paper towels through the use of selenium nanoparticles coatings. Int J Nanomedicine 8:407–411. doi:10.2147/IJN.S38777ijn-8-407

    Google Scholar 

  • Weir E, Lawlor A, Whelan A, Regan F (2008) The use of nanoparticles in anti-microbial materials and their characterization. Analyst 133:835–845. doi:10.1039/b715532h

    Article  CAS  Google Scholar 

  • Wu W, Li S, Liao S, Xiang F, Wu X (2010) Preparation of new sunscreen materials Ce12xZnxO22x via solid-state reaction at room temperature and study on their properties. Rare Met 29:149–153

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by Jordan University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majed M. Masadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masadeh, M.M., Karasneh, G.A., Al-Akhras, M.A. et al. Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria. Cytotechnology 67, 427–435 (2015). https://doi.org/10.1007/s10616-014-9701-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-014-9701-8

Keywords

Navigation