Skip to main content

Advertisement

Log in

Titanium dioxide nanoparticles: an in vitro study of DNA binding, chromosome aberration assay, and comet assay

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Engineered titanium dioxide nanoparticles (TiO2 NPs) are extensively used in cosmetic, pharmaceutical and other industries globally due to their unique properties, which has raised concern for biosafety. Genotoxicity assessment is an important part of biosafety evaluation; we report in vitro cytogenetic assays for NPs considering their unique physicochemical characteristics to fill the gap of laboratory data regarding biological safety along with mechanistic study for mode of interaction of NP with genetic material. Comet and chromosome aberration assay (CA assay) using short-term human peripheral blood cultures following exposure to TiO2 NPs; along with physicochemical parameters for stability of nano form in cultures; and DNA binding activity were carried out. The dynamic light scattering and zeta potential measurements revealed mono dispersion in media. The fluorescence spectroscopy for binding affinity of TiO2 NPs and human genomic DNA showed binding constant (Kb), 4.158 × 106 M−1 indicating strong binding affinity and negative ΔG0 value suggesting spontaneous DNA binding supporting its genotoxic potential. Following in vitro exposure to TiO2 NPs for 24 h, the cultures were analyzed for comet and CA assays, which showed significant results (p < 0.05) for % DNA intensity in tail, Olive Tail Moment and frequency of Chromosomal aberrations (CA) at 75 and 125 μM but not at 25 μM.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allouni ZE, Cimpan MR, Hol PJ, Skodvin T, Gjerdet NR (2009) Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Surf B 68:83–87

    Article  CAS  Google Scholar 

  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Orsiere T, De Meo M, Thill A, Zeyons O et al (2009) CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology 3:161–171

    Article  CAS  Google Scholar 

  • Barch MJ, Knutsen T, Spurbeck JL (1997) Association of genetic technologists. The AGT cytogenetics laboratory manual, 3rd edn. Lippincott-Raven Publishers, Philadelphia

    Google Scholar 

  • Barnes CA, Elsaesser A, Arkusz J, Smok A, Palus J, Leśniak A et al (2008) Reproducible cornet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Lett 8:3069–3074

    Article  CAS  Google Scholar 

  • Bonassi S, Norppa H, Ceppi M, Strömberg U, Vermeulen R, Znaor A et al (2008) Chromosomal aberration frequency in lymphocytes predicts the risk of cancer: results from a pooled cohort study of 22.358 subjects in 11 countries. Carcinogenesis 29:1178–1183

    Article  CAS  Google Scholar 

  • Catalán J, Järventaus H, Vippola M, Savolainen K, Norppa H (2012) Induction of chromosomal aberrations by carbon nanotubes and titanium dioxide nanoparticles in human lymphocytes in vitro. Nanotoxicology 6:825–836

    Article  Google Scholar 

  • Chen T, Yan J, Li Y (2014) Genotoxicity of titanium dioxide nanoparticles. J Food Drug Anal 22:95–104

    Article  CAS  Google Scholar 

  • Clare G (2012) The in vitro mammalian chromosome aberration test. Methods Mol Biol 817:69–91

    Article  CAS  Google Scholar 

  • De Marzi L, Monaco A, De Lapuente J, Ramos D, Borras M, Di Gioacchino M et al (2013) Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro. Int J Mol Sci 14:3065–3077

    Article  Google Scholar 

  • Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398:589–605

    Article  CAS  Google Scholar 

  • Dhawan A, Bajpayee M, Pandey AK, Parmar D Protocol for the Single Cell Gel Electrophoresis/Comet assay for rapid genotoxicity assessment. Ind Toxicol Res Centre. http://www.cometassayindia.org/protocol%20for%20comet%20assay.pdf

  • Doak SH, Manshian B, Jenkins GJ, Singh N (2012) In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res Genet Toxicol Environ Mutagen 745:104–111

    Article  CAS  Google Scholar 

  • Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ (2004) Nanotoxicology. J Occup Environ Med 61:727–728

    Article  CAS  Google Scholar 

  • Ellingsen JE (1991) A study on the mechanism of protein adsorption to TiO2. Biomaterials 12:593–596

    Article  CAS  Google Scholar 

  • Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 7:5577–5591

    Article  Google Scholar 

  • Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81:1253–1262

    Article  CAS  Google Scholar 

  • Ghosh M, Chakraborty A, Mukherjee A (2013) Cytotoxic, genotoxic and the hemolytic effect of titanium dioxide (TiO2) nanoparticles on human erythrocyte and lymphocyte cells in vitro. J Appl Toxicol 33:1097–1110

    Article  CAS  Google Scholar 

  • Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J et al (2015) Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nanoscale 7:2154–2198

    Article  CAS  Google Scholar 

  • Gopalan RC, Osman IF, Amani A, De Matas M, Anderson D (2009) The effect of zinc oxide and titanium dioxide nanoparticles in the Comet assay with UVA photoactivation of human sperm and lymphocytes. Nanotoxicology 3:33–39

    Article  CAS  Google Scholar 

  • Hackenberg S, Friehs G, Froelich K, Ginzkey C, Koehler C, Scherzed A et al (2010) Intracellular distribution, geno- and cytotoxic effects of nanosized titanium dioxide particles in the anatase crystal phase on human nasal mucosa cells. Toxicol Lett 195:9–14

    Article  CAS  Google Scholar 

  • Hackenberg S, Friehs G, Kessler M, Froelich K, Ginzkey C, Koehler C et al (2011) Nanosized titanium dioxide particles do not induce DNA damage in human peripheral blood lymphocytes. Environ Mol Mutagen 52:264–268

    Article  CAS  Google Scholar 

  • Huang S, Chueh PJ, Lin YW, Shih TS, Chuang SM (2009) Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure. Toxicol Appl Pharmacol 241:182–194

    Article  CAS  Google Scholar 

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2006) Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC Monogr Eval Carcinog Risks Hum 86:1–294

    Google Scholar 

  • IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. Carbon black, titanium dioxide, and talc. lyon (FR): International Agency for Research on Cancer; 2010. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 93. https://www.ncbi.nlm.nih.gov/books/NBK326521/

  • Ji Z, Jin X, George S, Xia T, Meng H, Wang X, Suarez E, Zhang H, Hoek EM, Godwin H, Nel AE, Zink JI (2010) Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ Sci Technol 44:7309–7314

    Article  CAS  Google Scholar 

  • Kang SJ, Kim BM, Lee YJ, Chung HW (2008) Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen 49:399–405

    Article  CAS  Google Scholar 

  • Kansara K, Patel P, Shah D, Shukla RK, Singh S, Kumar A et al (2015) TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environ Mol Mutagen 56:204–217

    Article  CAS  Google Scholar 

  • Kathiravan A, Renganathan R (2009) Photosensitization of colloidal TiO2 nanoparticles with phycocyanin pigment. J Colloid Interface Sci 335:196–202

    Article  CAS  Google Scholar 

  • Kathiravan A, Anandan S, Renganathan R (2009) Interaction of colloidal TiO2 with human serum albumin: a fluorescence quenching study. Colloids Surf A Physicochem Eng Asp 333:91–95

    Article  CAS  Google Scholar 

  • Khan M, Naqvi AH, Masood A (2015) Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles. Toxicol Rep 2:765–774

    Article  CAS  Google Scholar 

  • Kim JA, Åberg C, Salvati A, Dawson KA (2011) Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat Nanotechnol 7:62–68

    Article  Google Scholar 

  • Klinger A, Steinberg D, Kohavi D, Sela MN (1997) Mechanism of adsorption of human albumin to titanium in vitro. Biomed Mater 36:387–392

    Article  CAS  Google Scholar 

  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83:1124–1132

    Article  CAS  Google Scholar 

  • Kumar A, Khan S, Dhawan A (2014) Metal oxide nanoparticles elicit genotoxic responses in mammalian cells: a critical review. In: Misra A, Bellare JR (eds) Nanoscience and technology for mankind. National Academy of Sciences, Allahabad, pp 160–194

    Google Scholar 

  • Landsiedel R, Kapp MD, Schulz M, Wiench K, Oesch F (2009) Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations-many questions, some answers. Mutat Res 681:241–258

    Article  CAS  Google Scholar 

  • Landsiedel R, Ma-Hock L, Kroll A, Hahn D, Schnekenburger J, Wiench K et al (2010) Testing metal-oxide nanomaterials for human safety. Adv Mater 22:2601–2627

    Article  CAS  Google Scholar 

  • Li K, Zhao X, Hammer KB, Du S, Chen Y (2013a) Nanoparticles inhibit DNA replication by binding to DNA: modeling and experimental validation. ACS Nano 7:9664–9674

    Article  CAS  Google Scholar 

  • Li KG, Zhang W, Chen YS (2013b) Quantum dot binding to DNA: single molecule imaging with atomic force microscopy. Biotechnol J 8:110–116

    Article  CAS  Google Scholar 

  • Lindenschmidt RC, Driscoll KE, Perkins MA, Higgins JM, Maurer JK, Belfiore KA (1990) The comparison of a fibrogenic and two nonfibrogenic dusts by bronchoalveolar lavage. Toxicol Appl Pharmacol 102:268–281

    Article  CAS  Google Scholar 

  • Loveday KS, Lugo MH, Resnick MA (1989) Chromosome aberration and sister chromatid exchange tests in Chinese hamster ovary cells in vitro: II. Results with 20 chemicals. Environ Mol Mutagen 13:60–94

    Article  CAS  Google Scholar 

  • Magdolenova Z, Bilaničová D, Pojana G, Fjellsbø LM, Hudecova A, Hasplova K et al (2012) Impact of agglomeration and different dispersions of titanium dioxide nanoparticles on the human related in vitro cytotoxicity and genotoxicity. J Environ Monit 14:455–464

    Article  CAS  Google Scholar 

  • Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8:233–278

    Article  CAS  Google Scholar 

  • Malvern Instruments Ltd. (2013) Introducing the Zetasizer nano. Zetasizer nano user manual. p. 2(1–21). http://www.chem.uci.edu/~dmitryf/manuals/Malvern%20Zetasizer%20ZS%20DLS%20user%20manual.pdf

  • Mandzy N, Grulke E, Druffel T (2005) Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol 160:121–126

    Article  CAS  Google Scholar 

  • Mao Z, Xu B, Ji X, Zhou K, Zhang X, Chen M et al (2015) Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics. Nanoscale 7:8466–8475

    Article  CAS  Google Scholar 

  • Marucco A, Catalano F, Fenoglio I, Turci F, Martra G, Fubini B (2015) Possible chemical source of discrepancy between in vitro and in vivo tests in nanotoxicology caused by strong adsorption of buffer components. Chem Res Toxicol 28:87–91

    Article  CAS  Google Scholar 

  • Merhi M, Dombu CY, Brient A, Chang J, Platel A, Le Curieux F et al (2012) Study of serum interaction with a cationic nanoparticle: implications for in vitro endocytosis, cytotoxicity and genotoxicity. Int J Pharm 423:37–44

    Article  CAS  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  Google Scholar 

  • OECD (2014) Test No. 473: in vitro mammalian chromosome aberration test. OECD Publishing, Paris

    Book  Google Scholar 

  • Olive PL, Banáth JP, Durand RE (1990) Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “comet” assay. Radiat Res 122:86–94

    Article  CAS  Google Scholar 

  • Ong KJ, MacCormack TJ, Clark RJ, Ede JD, Ortega VA, Felix LC et al (2014) Widespread nanoparticle-assay interference: implications for nanotoxicity testing. PLoS ONE 9:e90650

    Article  Google Scholar 

  • Ophus EM, Rode L, Gylseth B, Nicholson DG, Saeed K (1979) Analysis of titanium pigments in human lung tissue. Scand J Work Environ Health 5:290–296

    Article  CAS  Google Scholar 

  • Park MV, Verharen HW, Zwart E, Hernandez LG, van Benthem J, Elsaesser A et al (2011) Genotoxicity evaluation of amorphous silica nanoparticles of different sizes using the micronucleus and the plasmid lacZ gene mutation assay. Nanotoxicology 5:168–181

    Article  CAS  Google Scholar 

  • Patel S, Patel P, Undre SB, Pandya SR, Singh M, Bakshi S (2016) DNA binding and dispersion activities of titanium dioxide nanoparticles with UV/vis spectrophotometry, fluorescence spectroscopy and physicochemical analysis at physiological temperature. J Mol Liq 213:304–311

    Article  CAS  Google Scholar 

  • Paz-y-Miño C, Dávalos MV, Sánchez ME, Arévalo M, Leone PE (2002) Should gaps be included in chromosomal aberration analysis? Evidence based on the comet assay. Mutat Res 516:57–61

    Article  Google Scholar 

  • Petersen EJ, Nelson BC (2010) Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem 398:613–650

    Article  CAS  Google Scholar 

  • Podila R, Brown JM (2013) Toxicity of engineered nanomaterials: a physicochemical perspective. J Biochem Mol Toxicol 27:50–55

    Article  CAS  Google Scholar 

  • Powers KW, Palazuelos M, Moudgil BM, Roberts SM (2007) Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1:42–51

    Article  CAS  Google Scholar 

  • Rahban M, Divsalar A, Saboury AA, Golestani A (2010) Nanotoxicity and spectroscopy studies of silver nanoparticle: calf thymus DNA and K562 as targets. J Phys Chem C 114:5798–5803

    Article  CAS  Google Scholar 

  • Ranjbar S, Shokoohinia Y, Ghobadi S, Bijari N, Gholamzadeh S, Moradi N et al (2013) Studies of the interaction between isoimperatorin and human serum albumin by multispectroscopic method: identification of possible binding site of the compound using esterase activity of the protein. Sci World J 2013:305081

    Google Scholar 

  • Savage JRK (1999) An introduction to chromosomal aberrations. In: Huret J-L (ed) Atlas of genetics and cytogenetics in oncology and haematology, vol 3, 2nd edn. INIST-CNRS, Vandœuvre-lès-Nancy, pp 110–115

    Google Scholar 

  • Schulze C, Schulze C, Kroll A, Schulze C, Kroll A, Lehr C-M (2007) Not ready to use—overcoming pitfalls when dispersing nanoparticles in physiological media. Nanotoxicology 2:51–61

    Article  Google Scholar 

  • Shahabadi N, Ghasemian Z, Hadidi S (2012) Binding studies of a new water-soluble iron(III) Schiff base complex to DNA using multispectroscopic methods. Bioinorg Chem Appl 2012:126451

    Google Scholar 

  • Sharma V, Singh P, Pandey AK, Dhawan A (2012) Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat Res 745:84–91

    Article  CAS  Google Scholar 

  • Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A (2011) ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro 25:231–241

    Article  CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  Google Scholar 

  • Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG et al (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914

    Article  CAS  Google Scholar 

  • Taurozzi JS, Hackley VA, Wiesner MR (2013) A standardised approach for the dispersion of titanium dioxide nanoparticles in biological media. Nanotoxicology 7:389–401

    Article  CAS  Google Scholar 

  • Tavares AM, Louro H, Antunes S, Quarré S, Simar S, De Temmerman PJ et al (2014) Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes. Toxicol In Vitro 28:60–69

    Article  CAS  Google Scholar 

  • Tedja R, Lim M, Amal R, Marquis C (2012) Effects of serum adsorption on cellular uptake profile and consequent impact of titanium dioxide nanoparticles on human lung cell lines. ACS Nano 6:4083–4093

    Article  CAS  Google Scholar 

  • Theogaraj E, Riley S, Hughes L, Maier M, Kirkland D (2007) An investigation of the photo-clastogenic potential of ultrafine titanium dioxide particles. Mutat Res 634:205–219

    Article  CAS  Google Scholar 

  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789

    Article  CAS  Google Scholar 

  • Turkez H (2011) The role of ascorbic acid on titanium dioxide-induced genetic damage assessed by the comet assay and cytogenetic tests. Exp Toxicol Pathol 63:453–457

    Article  CAS  Google Scholar 

  • US EPA (2009) External Review Draft-Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen; EPA/600/R-09/057. https://nepis.epa.gov/Exe/ZyPDF.cgi/P100N7OP.PDF?Dockey=P100N7OP.PDF

  • Vevers WF, Jha AN (2008) Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17:410–420

    Article  CAS  Google Scholar 

  • Wang Z, Li N, Zhao J, White JC, Qu P, Xing B (2012) CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25:1512–1521

    Article  CAS  Google Scholar 

  • Warheit DB, Donner EM (2010) Rationale of genotoxicity testing of nanomaterials: regulatory requirements and appropriateness of available OECD test guidelines. Nanotoxicology 4:409–413

    Article  CAS  Google Scholar 

  • Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171:99–110

    Article  CAS  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250

    Article  CAS  Google Scholar 

  • Woodruff RS, Li Y, Yan J, Bishop M, Jones MY, Watanabe F et al (2012) Genotoxicity evaluation of titanium dioxide nanoparticles using the Ames test and Comet assay. J Appl Toxicol 32:934–943

    Article  CAS  Google Scholar 

  • Xie H, Mason MM, Wise JP Sr (2011) Genotoxicity of metal nanoparticles. Rev Environ Health 26:251–268

    Article  CAS  Google Scholar 

  • Zhang W, Yao Y, Chen YS (2011) Imaging and quantifying the morphology and nanoelectrical properties of quantum dot nanoparticles interacting with DNA. J Phys Chem C 115:599–606

    Article  CAS  Google Scholar 

  • Zhu R-R, Wang S-L, Zhang R, Sun X-Y, Yao S-D (2007) A novel toxicological evaluation of TiO2 nanoparticles on DNA structure. Chin J Chem 25:958–961

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Nirma University for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonal R. Bakshi.

Appendix

Appendix

Fig. 10
figure 10

Photomicrographs of metaphase chromosomes. Arrows representing the aberrations are shown in green (chromatid gap), blue (chromatid break), and red (chromosomal break). a Single chromatid gap and break each. b Single chromatid break. c 3 chromatid gaps and 1 chromosomal break

Fig. 11
figure 11

Scoring sheet for Chromosome Aberration Assay

Fig. 12
figure 12

Representative comet assay images showing DNA damage in terms of tail intensity a untreated control; b positive control; c1, c2, c3 cultures treated with 25, 75 and 125 μM of TiO2 NPs respectively

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Patel, P. & Bakshi, S.R. Titanium dioxide nanoparticles: an in vitro study of DNA binding, chromosome aberration assay, and comet assay. Cytotechnology 69, 245–263 (2017). https://doi.org/10.1007/s10616-016-0054-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-016-0054-3

Keywords

Navigation