Skip to main content
Log in

Analytical survey of arsenic in geothermal waters from sites in Kyushu, Japan, and a method for removing arsenic using magnetite

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The objective of this study was to survey the cation and anion contents of geothermal waters to gather fundamental information on geographical variations. Sixteen sites in hot spring areas on the island of Kyushu in Japan were studied. The study focused on the arsenic content of the samples. Very high arsenic concentrations (more than 0.1 mg/l) were detected in most of the geothermal waters sampled. High contents of boron and fluoride (more than 1.0 mg/l) were also detected in some samples. Arsenic removal was performed on a laboratory scale using columns packed with a magnetite-type adsorbent. The reduction of arsenic contamination to a concentration of less than 0.01 mg/l could be achieved in the early stages of adsorption (bed volume = 200).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anezaki, K., Nukatsuka, I., & Ohzeki, K. (1999). Determination of arsenic(III) and total arsenic(III, V) in water samples by resin suspension graphite furnace atomic absorption spectrometry. Analytical Sciences, 15, 829–834.

    Article  CAS  Google Scholar 

  • Bajpai, S., & Chaudhuri, M. (1999). Removal of arsenic from ground water by manganese dioxide-coated sand. Journal of Environmental Engineering, 125(8), 782–784.

    Article  CAS  Google Scholar 

  • Bang, S., Korfiatis, G. P., & Meng, X. (2005). Removal of arsenic from water by zero-valent iron. Journal of Hazardous Materials, 121(1–3), 61–67.

    Article  CAS  Google Scholar 

  • Campos, V. (2002). The effect of carbon steel-wool in removal of arsenic from drinking water. Environmental Geology, 42(1), 81–82.

    Article  CAS  Google Scholar 

  • Choong, T. S. Y., Chuah, T. G., Robiah, Y., Gregory Koay, F. L., & Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination, 217(1–3), 139–166.

    Article  CAS  Google Scholar 

  • Cornejo, L., Lienqueo, H., Arenas, M., Acarapi, J., Contreras, D., Yáñez, J., et al. (2008). In field arsenic removal from natural water by zero-valent iron assisted by solar radiation. Environmental Pollution, 156(3), 827–831.

    Article  CAS  Google Scholar 

  • Daus, B., Wennrich, R., & Weiss, H. (2004). Sorption materials for arsenic removal from water: A comparative study. Water Research, 38(12), 2948–2954.

    Article  CAS  Google Scholar 

  • Fierro, V., Muñiz, G., Gonzalez-Sánchez, G., Ballinas, M. L., & Celzard, A. (2009). Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis. Journal of Hazardous Materials, 168(1), 430–437.

    Article  CAS  Google Scholar 

  • Fostier, A. H., Pereira, M. S. S., Rath, S., & Guimarães, J. R. (2008). Arsenic removal from water employing heterogeneous photocatalysis with TiO2 immobilized in PET bottles. Chemosphere, 72(2), 319–324.

    Article  CAS  Google Scholar 

  • Gregor, J. (2001). Arsenic removal during conventional aluminium-based drinking-water treatment. Water Research, 35(7), 1659–1664.

    Article  CAS  Google Scholar 

  • Gu, Z., & Deng, B. (2007). Use of iron-containing mesoporous carbon (IMC) for arsenic removal from drinking water. Environmental Engineering Science, 24(1), 113–121.

    Article  CAS  Google Scholar 

  • Guan, X.-H., Wang, J., & Chusuei, C. C. (2008). Removal of arsenic from water using granular ferric hydroxide: Macroscopic and microscopic studies. Journal of Hazardous Materials, 156(1–3), 178–185.

    Article  CAS  Google Scholar 

  • Henke, K. (2009). Waste treatment and remediation technologies for arsenic. In K. Henke (Ed.), Arsenic: Environmental chemistry, health threats and waste treatment (pp. 351–430). Chichester: Wiley.

    Google Scholar 

  • Hlavay, J., & Polyák, K. (2005). Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water. Journal of Colloid and Interface Science, 284(1), 71–77.

    Article  CAS  Google Scholar 

  • Joshi, A., & Chaudhuri, M. (1996). Removal of arsenic from ground water by iron oxide-coated sand. Journal of Environmental Engineering, 122(8), 769–771.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., & Zouboulis, A. I. (2002). Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Research, 36(20), 5141–5155.

    Article  CAS  Google Scholar 

  • Krishna, M. V. B., Chandrasekaran, K., Karunasagar, D., & Arunachalam, J. (2001). A combined treatment approach using Fenton’s reagent and zero valent iron for the removal of arsenic from drinking water. Journal of Hazardous Materials, 84(2–3), 229–240.

    Article  CAS  Google Scholar 

  • Leupin, O. X., Hug, S. J., & Badruzzaman, A. B. M. (2005). Arsenic removal from Bangladesh tube well water with filter columns containing zerovalent iron filings and sand. Environmental Science and Technology, 39(20), 8032–8037.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, C. U., Jr. (2007). Arsenic removal from water/wastewater using adsorbents—A critical review. Journal of Hazardous Materials, 142(1–2), 1–53.

    Article  CAS  Google Scholar 

  • Mondal, P., Majumder, C. B., & Mohanty, B. (2008). Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. Journal of Hazardous Materials, 150(3), 695–702.

    Article  CAS  Google Scholar 

  • Ohe, K., Tagai, Y., Nakamura, S., Oshima, T., & Baba, Y. (2005). Adsorption behavior of arsenic(III) and arsenic(V) using magnetite. Journal of Chemical Engineering of Japan, 38(8), 671–676.

    Article  CAS  Google Scholar 

  • Pande, S. P., Deshpande, L. S., Patni, P. M., & Lutade, S. L. (1997). Arsenic removal studies in some ground waters of West Bengal, India. Journal of Environmental Science and Health: Part A Toxic/Hazardous Substances and Environmental Engineering, 32(7), 1981–1987.

    Google Scholar 

  • Sylvester, P., Westerhoff, P., Möller, T., Badruzzaman, M., & Boyd, O. (2007). A hybrid sorbent utilizing nanoparticles of hydrous iron oxide for arsenic removal from drinking water. Environmental Engineering Science, 24(1), 104–112.

    Article  CAS  Google Scholar 

  • Thirunavukkarasu, O. S., Viraraghavan, T., & Subramanian, K. S. (2003a). Arsenic removal from drinking water using granular ferric hydroxide. Water SA, 29(2), 161–170.

    CAS  Google Scholar 

  • Thirunavukkarasu, O. S., Viraraghavan, T., & Subramanian, K. S. (2003b). Arsenic removal from drinking water using iron oxide-coated sand. Water, Air, and Soil Pollution, 142(1–4), 95–111.

    Article  CAS  Google Scholar 

  • Tuutijärvi, T., Lu, J., Sillanpää, M., & Chen, G. (2009). As(V) adsorption on maghemite nanoparticles. Journal of Hazardous Materials, 166(2–3), 1415–1420.

    Article  Google Scholar 

  • Tyrovola, K., Nikolaidis, N. P., Veranis, N., Kallithrakas-Kontos, N., & Koulouridakis, P. E. (2006). Arsenic removal from geothermal waters with zero-valent iron. Effect of temperature, phosphate and nitrate. Water Research, 40(12), 2375–2386.

    Article  CAS  Google Scholar 

  • Vaishya, R. C., & Gupta, S. K. (2004). Modeling arsenic(V) removal from water by sulfate modified iron-oxide coated sand (SMIOCS). Separation Science and Technology, 39(3), 645–666.

    Article  CAS  Google Scholar 

  • Wilkie, J. A., & Hering, J. G. (1996). Adsorption of arsenic onto hydrous ferric oxide: Effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloid and Surfaces, 107, 97–110.

    Article  CAS  Google Scholar 

  • World Health Organization (2008) Guidelines for drinking-water quality, third edition incorporating the first and second addenda. World Health Organization, Geneva; http://www.who.int/water_sanitation_health/dwq/fulltext.pdf

  • Xu, Y.-H., Nakajima, T., & Ohki, A. (2002). Adsorption and removal of arsenic(V) from drinking water by aluminum-loaded Shirasu-zeolite. Journal of Hazardous Materials, 92(3), 275–287.

    Article  CAS  Google Scholar 

  • Zaspalis, V., Pagana, A., & Sklari, S. (2007). Arsenic removal from contaminated water by iron oxide sorbents and porous ceramic membranes. Desalination, 217(1–3), 167–180.

    Article  CAS  Google Scholar 

  • Zhang, W., Singh, P., Paling, E., & Delides, S. (2004). Arsenic removal from contaminated water by natural iron ores. Minerals Engineering, 17(4), 517–524.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuharu Yoshizuka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshizuka, K., Nishihama, S. & Sato, H. Analytical survey of arsenic in geothermal waters from sites in Kyushu, Japan, and a method for removing arsenic using magnetite. Environ Geochem Health 32, 297–302 (2010). https://doi.org/10.1007/s10653-010-9300-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-010-9300-3

Keywords

Navigation