Skip to main content
Log in

Effect of weathering on abundance and release of potentially toxic elements in soils developed on Lower Cambrian black shales, P. R. China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This paper examines the geochemical features of 8 soil profiles developed on metalliferous black shales distributed in the central parts of the South China black shale horizon. The concentrations of 21 trace elements and 8 major elements were determined using ICP-MS and XRF, respectively, and weathering intensity (W) was calculated according to a new technique recently proposed in the literature. The data showed that the black shale soils inherited a heterogeneous geochemical character from their parent materials. A partial least square regression model and EFbedrock (enrichment factor normalized to underlying bedrock) indicated that W was not a major control in the redistribution of trace metals. Barium, Sn, Cu, V, and U tended to be leached in the upper soil horizons and trapped by Al and Fe oxides, whereas Sb, Cd, and Mo with negative EF values across the whole profiles may have been leached out during the first stage of pedogenesis (mainly weathering of black shale). Compared with the Chinese average soils, the soils were strongly enriched in the potentially toxic metals Mo, Cd, Sb, Sn, U, V, Cu, and Ba, among which the 5 first listed were enriched to the highest degrees. Elevated concentrations of these toxic metals can have a long-term negative effect on human health, in particular, the soils in mining areas dominated by strongly acidic conditions. As a whole, the black shale soils have much in common with acid sulfate soils. Therefore, black shale soils together with acid sulfate soils deserve more attention in the context of metal exposure and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andriesse, W., & van Mensvoort, M. E. F. (2006). Acid sulfate soils: distribution and extent. In R. Lal (Ed.), Encyclopaedia of soil science. Boca Raton, FL: CRC, Taylor and Francis.

    Google Scholar 

  • Åström, M. E. (1998). Partitioning of transition metals in oxidised and reduced zones of sulphide-bearing fine-grained sediments. Applied Geochemistry, 13, 607–617.

    Article  Google Scholar 

  • Åström, M. E., & Björklund, A. (1995). Impact of acid sulphate soils on stream water geochemistry in western Finland. Journal of Geochemical Exploration, 55, 163–170.

    Article  Google Scholar 

  • Åström, M. E., Nystrand, M., Gustafsson, J. P., Österholm, P., Nordmyr, L., Reynolds, J. K., et al. (2010). Lanthanoid behaviour in an acidic landscape. Geochimica et Cosmochimica Acta, 74, 829–845.

    Article  Google Scholar 

  • Boman, A., Åström, M. E., & Fröjdö, S. (2008). Sulfur dynamics in boreal acid sulphate soils rich in metastable iron sulphide—the role of artificial drainage. Chemical Geology, 255, 68–77.

    Article  CAS  Google Scholar 

  • Boman, A., Fröjdö, S., Backlund, K., & Åström, M. E. (2010). Impact of isostatic land uplift and artificial drainage on oxidation of brackish-water sediments rich in metastable iron sulfide. Geochimica et Cosmochimica Acta, 74, 1268–1281.

    Article  CAS  Google Scholar 

  • Buat-Menard, P., & Chesselet, R. (1979). Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42, 399–411.

    Article  CAS  Google Scholar 

  • Burton, E. D., Bush, R. T., & Sullivan, L. A. (2006a). Sedimentary iron geochemistry in acidic waterways associated with coastal lowland acid sulfate soils. Geochimica et Cosmochimica Acta, 70, 5455–5468.

    Article  CAS  Google Scholar 

  • Burton, E. D., Bush, R. T., & Sullivan, L. A. (2006b). Acid-volatile sulfide oxidation in coastal flood plain drains: iron–sulfur cycling and effects on water quality. Environmental Science and Technology, 40, 1217–1222.

    Article  CAS  Google Scholar 

  • Chon, H. T., Cho, C. H., Kim, K. W., & Moon, H. S. (1996). The occurrence and dispersion of potentially toxic elements in areas covered with black shales and slates in Korea. Applied Geochemistry, 11, 69–76.

    Article  CAS  Google Scholar 

  • Dasch, E. J. (1969). Strontium isotope in weathering profiles, deep sea sediments and sedimentary rocks. Geochimica et Cosmochimica Acta, 33, 1521–1552.

    Article  CAS  Google Scholar 

  • Fältmarsch, R., Åström, M. E., & Vuori, K.-M. (2008). Environmental risks of metals mobilised from acid sulphate soils in Finland: a literature review. Boreal Environment Research, 13, 444–456.

    Google Scholar 

  • Fältmarsch, R., Österholm, P., Greger, M., & Åström, M. E. (2009). Metal concentrations in oats (Avena sativa L.) grown on acid sulphate soils. Agricultural and Food Science, 18, 45–56.

    Article  Google Scholar 

  • Fan, D. L., Yang, X. Z., Wang, L. F., & Cheng, N. S. (1973). Petrological and geochemical characteristics of a nickel-molybdenum-multi-element-bearing lower Cambrian black shale from a certain district in South China. Geochimica, 3, 143–168. (in Chinese with English abstract).

    Google Scholar 

  • Fang, W. X., Hu, R. Z., & Wu, P. W. (2002). Influence of black shales on soils and edible plants in the Ankang Area, Shaanxi Province, P. R. China. Environmental Geochemistry and Health, 24, 35–46.

    Article  CAS  Google Scholar 

  • Horan, M. F., Morgan, J. W., Grauch, R. L., Coveney, R. M., Murowchick, J. B., & Hulbert, L. J. (1994). Rhenium and osmium isotopes in black shales and Ni-Mo-PEG-rich sulfide layers, Yukon Territory, Canada, and Hunan and Guizhou province, China. Geochimica et Cosmochimica Acta, 58, 257–265.

    Article  CAS  Google Scholar 

  • Hrgi (Hunan Regional Geology Institute). (1972). Report of regional geology of Anhua (1:200000) (pp. 7–14). Geological Press, Beijing (in Chinese).

  • Huang, W. K. (1989). Study of clay minerals and phyllo-metalmorphic minerals in shales of Sinian-Cambrian starta in Western Hunan. Hunan Geology, 8(1), 54–59. (in Chinese with English abstract).

    Google Scholar 

  • Lavergren, U., Åström, M. E., Bergbäck, B., & Holmstrom, H. (2009a). Mobility of trace elements in black shale assessed by leaching tests and sequential chemical extraction. Geochemical, Exploration, or Environmental Analysis, 9, 71–79.

    Article  CAS  Google Scholar 

  • Lavergren, U., Åström, M. E., Falk, H., & Bergbäck, B. (2009b). Metal dispersion in groundwater in an area with natural and processed black shale-nationwide perspective and comparison with acid sulfate soils. Applied Geochemistry, 24, 359–369.

    Article  CAS  Google Scholar 

  • Lee, J. S., Chon, H. T., & Kim, K. W. (1998a). Migration and dispersion of trace elements in the rock-soil-plant system in areas underlain by black shales and slates of the Okchon Zone, Korea. Journal of Geochemical Exploration, 65, 61–78.

    Article  CAS  Google Scholar 

  • Lee, J. S., Chon, H. T., Kim, J. S., Kim, K. W., & Moon, H. S. (1998b). Enrichment of potentially toxic elements in areas underlain by black shales and slates in Korea. Environmental Geochemistry and Health, 20, 135–147.

    Article  CAS  Google Scholar 

  • Macdonald, B. C. T., White, I., Åström, M. E., Keene, A. F., Melville, M. D., & Reynolds, J. K. (2007). Discharge of weathering products from acid sulfate soils after a rainfall event, Tweed River, eastern Australia. Applied Geochemistry, 22, 2695–2705.

    Article  CAS  Google Scholar 

  • Mao, J. W., Lehmann, B., Andao, D., Guang, D. I., Ma, D. S., Wang, Y. T., et al. (2002). Re-Os dating on polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geological singnificance. Economic Geology, 17, 1535–1547.

    Google Scholar 

  • Nesbitt, H. W., & Markovics, G. (1997). Weathering of granodioritic crust, long term storage of elements in weathering profile, and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta, 61(8), 1653–1670.

    Article  CAS  Google Scholar 

  • Nordmyr, L., Österholm, P., & Åström, M. E. (2008). Estuarine behaviour of metal loads leached from coastal lowland Acid Sulphate soils. Marine Environmental Research, 66, 378–393.

    Article  CAS  Google Scholar 

  • Ohta, T., & Arai, H. (2007). Statistial empirical index of chemical weathering in igneous rocks: A new tool for evaluating degree of weathering. Chemical Geology, 240, 280–297.

    Article  CAS  Google Scholar 

  • Pašava, J., Kríbek, B., & Žák, K. (2003). Preliminary results of the study of toxic elements in soils and crop plants in areas of Ni-Mo black shale-hosted deposits (Zunyi region, south China). In D. Eliopoulos et al. (Eds.) Mineral exploration and substantial development (pp 53–56).

  • Peng, B., Piestrzynski, A., Pieczonka, J., Xie, S. R., Xiao, M. L., Wang, Y. Z., et al. (2007). Mineralogical and geochemical constrains on environmental impacts from waste rock at Taojiang Mn-ore deposit, central Hunan, China. Environmental Geology, 52(7), 1277–1296.

    Article  CAS  Google Scholar 

  • Peng, B., Song, Z. L., Tu, X. L., Lv, H. Z., & Wu, F. C. (2004). Release of heavy metals during weathering of the Lower Cambrian black shales in western Hunan, China. Environmental Geology, 45(8), 1137–1147.

    Article  CAS  Google Scholar 

  • Peng, B., Tang, X. Y., Yu, C. X., Xie, S. R., Xiao, M. L., Song, Z., et al. (2009a). Heavy metal geochemistry of the acid mine drainage discharged from the Hejiacun uranium mine in central Hunan, China. Environmental Geology, 57(8), 421–434.

    Article  CAS  Google Scholar 

  • Peng, B., Tang, X. Y., Yu, C. X., Xu, L. S., Xie, S. R., Yang, G., et al. (2009b). Geochemical study of heavy metal contamination of soils derived from black shales at the HJC uranium mine in Central Hunan, China. Acta Geological Sinica, 83(1), 89–106. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Peng, B., Wu, F. C., Xiao, M. L., Xie, S. R., Lu, H. Z., & Dai, Y. N. (2005). The resource functions and environmental effects of black shales. Bulletin of Mineralogy Petrology and Geochemistry, 24(2), 153–158. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Peucker-Ehrenbrink, B., & Hannigan, R. (2000). Effects of black shale weathering on mobility of rhenium and platinum group elements. Geology, 28, 475–478.

    Article  CAS  Google Scholar 

  • Poňavič, M., Pašava, J., Vymazalová, A., Kříbek, B., Deng, H. L., Luo, T. J., et al. (2006). Fractionation of toxic trace elements in soils around Mo-Ni black shale-hosted minesite, Zunyi regional, southern China: Environmental implications. Bulletin of Geosciences, 81(3), 197–206.

    Google Scholar 

  • Reimann, C., & Filzoser, P. (1999). Normal and lognormal data distribution in geochemistry: Death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environmental Geology, 39(9), 1001–1014.

    Article  Google Scholar 

  • Selinus, O. S., & Esbensen, K. (1995). Separating anthropogenic from natural anomalies in environmental geochemistry. Journal of Geochemical Exploration, 55, 55–66.

    Article  CAS  Google Scholar 

  • Sudom, M. D., & Arnaud, R. J. S. T. (1971). Use of quartz, zirconium and titanium as indices in pedological studies. Canadian Journal of Soil Science, 51, 385–395.

    Article  CAS  Google Scholar 

  • Sundström, R., Åström, M., & Österholm, P. (2002). Comparison of the metal content in acid sulphate soil runoff and industrial effluents in Finland. Environmental Science and Technology, 36, 4269–4272.

    Article  Google Scholar 

  • Tang, X. Y., Peng, B., Yu, X. Y., Xie, S. R., Yang, G., Yin, C. Y., et al. (2009). Elemental geochemistry of soils derived from the Lower-Cambrian black shales in Anhua county, central Hunan (China). Acta Scientiae Circumstantiae, 29(12), 2623–2634. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Tong, Y. M. (1990). Environmental pollutions from ore exploiting activities in Hunan province, China. Hunan Geology, 9(1), 11–14. (in Chinese).

    Google Scholar 

  • Tuttle, M. L. W., & Breit, G. N. (2009a). Weathering of New Albany shale, Kentucky: I. Weathering zones defined by mineralogy and major-element composition. Applied Geochemistry, 24, 1549–1564.

    Article  CAS  Google Scholar 

  • Tuttle, M. L. W., Breit, G. N., & Goldhaber, M. B. (2009b). Weathering of New Albany shale, Kentucky: II. Redistribution of minor and trace elements. Applied Geochemistry, 24, 1565–1578.

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, C. A. (1965). Organic carbon. In C. A. Black (Ed.), Methods of soil analysis. Wisconsin, USA: American Society of Agronomy, BC.

    Google Scholar 

  • Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130.

    Article  CAS  Google Scholar 

  • Xie, S. R., Peng, B., Tang, X. Y., & Yu, C. X. (2007). Environmental geochemistry of the waste rock dump in the Taojiang manganese deposit, Hunan, China. Geological Bulletin of China, 26(3), 333–343. (in Chinese with English abstract).

    Google Scholar 

  • Xie, S. R., Peng, B., Tang, X. Y., Yu, C. X., & Wu, F. C. (2008). Characteristics of heavy metal contamination of soils derived from black shale in the central Hunan, China. Chinese Journal of Soil Science, 39(1), 137–142. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Yan, M. C., Gu, T. X., Chi, Q. H., & Wang, C. S. (1997). Abundence of chemical elements of soils in China and supergenesis geochemistry characteristics. Geophysical and Geochemical Exploration, 21(3), 161–167. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Yu, C. X., Peng, B., Tang, X. Y., Xie, S. R., Wu, F. C., Yin, C. Y., et al. (2008). The black shale and relative heavy metal contamination. Bulletin of Mineralogy, Petrology and Geochemistry, 27(2), 137–145. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Yu, C. X., Peng, B., Tang, X. Y., Xie, S. R., Yang, G., Yin, C. Y., et al. (2009). Geochemical characteristics of soils derived from the Lower-Cambrian black shales distributed in Central Hunan, China. Acta Petrologica Sinica, 46(4), 557–570. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Žák, K., Pašava, J., Vymazalová, A. L. C., & Zeng, M. (2003). Ni-Mo-PEG rich black shales of South China: Preliminary results from the isotope study of related barite and carbonates. In D. Eliopoulos et al. (Eds.) Mineral exploration and substantial development (pp 861–864).

Download references

Acknowledgments

This study was supported by the National Scientific Foundation Committee of China grant number 40572172 and 41073095 and by the research and development platform Nova FoU in Oskarshamn, Sweden. Mr Xianglin Tu at the Guangzhou Institute of Geochemistry is thanked for help for the chemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changxun Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, C., Peng, B., Peltola, P. et al. Effect of weathering on abundance and release of potentially toxic elements in soils developed on Lower Cambrian black shales, P. R. China. Environ Geochem Health 34, 375–390 (2012). https://doi.org/10.1007/s10653-011-9398-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-011-9398-y

Keywords

Navigation